| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2llnm.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							2llnm.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							2llnm.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							2llnm.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 6 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 8 | 
							
								7 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 13 | 
							
								2 4
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) )  | 
						
						
							| 14 | 
							
								5 6 10 13
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							breq2d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ↔  𝑅  ≤  ( 𝑄  ∨  𝑃 ) ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							mtbid | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ¬  𝑅  ≤  ( 𝑄  ∨  𝑃 ) )  | 
						
						
							| 17 | 
							
								7 1 2 3 4
							 | 
							2llnma1b | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝑅  ≤  ( 𝑄  ∨  𝑃 ) )  →  ( ( 𝑄  ∨  𝑃 )  ∧  ( 𝑄  ∨  𝑅 ) )  =  𝑄 )  | 
						
						
							| 18 | 
							
								5 9 10 11 16 17
							 | 
							syl131anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑄  ∨  𝑃 )  ∧  ( 𝑄  ∨  𝑅 ) )  =  𝑄 )  |