| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2llnma1b.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							2llnma1b.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							2llnma1b.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							2llnma1b.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							2llnma1b.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							hllat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat )  | 
						
						
							| 7 | 
							
								6
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 8 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 9 | 
							
								1 5
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑃  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 12 | 
							
								1 2 3
							 | 
							latlej1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  𝑃  ≤  ( 𝑃  ∨  𝑋 ) )  | 
						
						
							| 13 | 
							
								7 10 11 12
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑃  ≤  ( 𝑃  ∨  𝑋 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 15 | 
							
								1 5
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  𝐵 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑄  ∈  𝐵 )  | 
						
						
							| 17 | 
							
								1 2 3
							 | 
							latlej1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 18 | 
							
								7 10 16 17
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 19 | 
							
								1 3
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑃  ∨  𝑋 )  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								7 10 11 19
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  ( 𝑃  ∨  𝑋 )  ∈  𝐵 )  | 
						
						
							| 21 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 22 | 
							
								1 3 5
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  𝐵 )  | 
						
						
							| 23 | 
							
								21 8 14 22
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  𝐵 )  | 
						
						
							| 24 | 
							
								1 2 4
							 | 
							latlem12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  𝐵  ∧  ( 𝑃  ∨  𝑋 )  ∈  𝐵  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐵 ) )  →  ( ( 𝑃  ≤  ( 𝑃  ∨  𝑋 )  ∧  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  𝑃  ≤  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 25 | 
							
								7 10 20 23 24
							 | 
							syl13anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  ( ( 𝑃  ≤  ( 𝑃  ∨  𝑋 )  ∧  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  𝑃  ≤  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 26 | 
							
								13 18 25
							 | 
							mpbi2and | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑃  ≤  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							hlatl | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  AtLat )  | 
						
						
							| 28 | 
							
								27
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝐾  ∈  AtLat )  | 
						
						
							| 29 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( 𝑃  ≤  ( 𝑃  ∨  𝑋 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 31 | 
							
								13 29 30
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 32 | 
							
								1 3
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑋 )  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( ( 𝑃  ∨  𝑋 )  ∨  𝑄 )  ∈  𝐵 )  | 
						
						
							| 33 | 
							
								7 20 16 32
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  ( ( 𝑃  ∨  𝑋 )  ∨  𝑄 )  ∈  𝐵 )  | 
						
						
							| 34 | 
							
								1 2 3
							 | 
							latlej1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑋 )  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ∨  𝑋 )  ≤  ( ( 𝑃  ∨  𝑋 )  ∨  𝑄 ) )  | 
						
						
							| 35 | 
							
								7 20 16 34
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  ( 𝑃  ∨  𝑋 )  ≤  ( ( 𝑃  ∨  𝑋 )  ∨  𝑄 ) )  | 
						
						
							| 36 | 
							
								1 2 7 10 20 33 13 35
							 | 
							lattrd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑃  ≤  ( ( 𝑃  ∨  𝑋 )  ∨  𝑄 ) )  | 
						
						
							| 37 | 
							
								1 2 3 4 5
							 | 
							cvrat3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑋 )  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 )  ∧  𝑃  ≤  ( ( 𝑃  ∨  𝑋 )  ∨  𝑄 ) )  →  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							3impia | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑃  ∨  𝑋 )  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 )  ∧  𝑃  ≤  ( ( 𝑃  ∨  𝑋 )  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 )  | 
						
						
							| 39 | 
							
								21 20 8 14 31 29 36 38
							 | 
							syl133anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 )  | 
						
						
							| 40 | 
							
								2 5
							 | 
							atcmp | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 )  →  ( 𝑃  ≤  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) )  ↔  𝑃  =  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 41 | 
							
								28 8 39 40
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  ( 𝑃  ≤  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) )  ↔  𝑃  =  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 42 | 
							
								26 41
							 | 
							mpbid | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  𝑃  =  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							eqcomd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑋 ) )  →  ( ( 𝑃  ∨  𝑋 )  ∧  ( 𝑃  ∨  𝑄 ) )  =  𝑃 )  |