Metamath Proof Explorer


Theorem 2llnma2rN

Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 2-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 2llnm.l = ( le ‘ 𝐾 )
2llnm.j = ( join ‘ 𝐾 )
2llnm.m = ( meet ‘ 𝐾 )
2llnm.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 2llnma2rN ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 𝑅 ) ( 𝑄 𝑅 ) ) = 𝑅 )

Proof

Step Hyp Ref Expression
1 2llnm.l = ( le ‘ 𝐾 )
2 2llnm.j = ( join ‘ 𝐾 )
3 2llnm.m = ( meet ‘ 𝐾 )
4 2llnm.a 𝐴 = ( Atoms ‘ 𝐾 )
5 simp1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
6 simp21 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
7 simp23 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅𝐴 )
8 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴 ) → ( 𝑃 𝑅 ) = ( 𝑅 𝑃 ) )
9 5 6 7 8 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑃 𝑅 ) = ( 𝑅 𝑃 ) )
10 simp22 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
11 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴 ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
12 5 10 7 11 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
13 9 12 oveq12d ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 𝑅 ) ( 𝑄 𝑅 ) ) = ( ( 𝑅 𝑃 ) ( 𝑅 𝑄 ) ) )
14 1 2 3 4 2llnma2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 𝑃 ) ( 𝑅 𝑄 ) ) = 𝑅 )
15 13 14 eqtrd ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 𝑅 ) ( 𝑄 𝑅 ) ) = 𝑅 )