| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2llnm.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							2llnm.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							2llnm.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							2llnm.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 6 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 8 | 
							
								2 4
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑅  ∨  𝑃 ) )  | 
						
						
							| 9 | 
							
								5 6 7 8
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑅  ∨  𝑃 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 11 | 
							
								2 4
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝑄  ∨  𝑅 )  =  ( 𝑅  ∨  𝑄 ) )  | 
						
						
							| 12 | 
							
								5 10 7 11
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑄  ∨  𝑅 )  =  ( 𝑅  ∨  𝑄 ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							oveq12d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( ( 𝑃  ∨  𝑅 )  ∧  ( 𝑄  ∨  𝑅 ) )  =  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑅  ∨  𝑄 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  =  𝑅 )  →  𝑄  =  𝑅 )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  =  𝑅 )  →  ( 𝑅  ∨  𝑄 )  =  ( 𝑅  ∨  𝑅 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  =  𝑅 )  →  𝐾  ∈  HL )  | 
						
						
							| 17 | 
							
								
							 | 
							simpl23 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  =  𝑅 )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								2 4
							 | 
							hlatjidm | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴 )  →  ( 𝑅  ∨  𝑅 )  =  𝑅 )  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  =  𝑅 )  →  ( 𝑅  ∨  𝑅 )  =  𝑅 )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  =  𝑅 )  →  ( 𝑅  ∨  𝑄 )  =  𝑅 )  | 
						
						
							| 21 | 
							
								20
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  =  𝑅 )  →  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑅  ∨  𝑄 ) )  =  ( ( 𝑅  ∨  𝑃 )  ∧  𝑅 ) )  | 
						
						
							| 22 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  →  𝑅  ≤  ( 𝑅  ∨  𝑃 ) )  | 
						
						
							| 23 | 
							
								5 7 6 22
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  𝑅  ≤  ( 𝑅  ∨  𝑃 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							hllat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat )  | 
						
						
							| 25 | 
							
								24
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 27 | 
							
								26 4
							 | 
							atbase | 
							⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 28 | 
							
								7 27
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								26 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  →  ( 𝑅  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								5 7 6 29
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑅  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 31 | 
							
								26 1 3
							 | 
							latleeqm2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅  ∨  𝑃 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑅  ≤  ( 𝑅  ∨  𝑃 )  ↔  ( ( 𝑅  ∨  𝑃 )  ∧  𝑅 )  =  𝑅 ) )  | 
						
						
							| 32 | 
							
								25 28 30 31
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑅  ≤  ( 𝑅  ∨  𝑃 )  ↔  ( ( 𝑅  ∨  𝑃 )  ∧  𝑅 )  =  𝑅 ) )  | 
						
						
							| 33 | 
							
								23 32
							 | 
							mpbid | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( ( 𝑅  ∨  𝑃 )  ∧  𝑅 )  =  𝑅 )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  =  𝑅 )  →  ( ( 𝑅  ∨  𝑃 )  ∧  𝑅 )  =  𝑅 )  | 
						
						
							| 35 | 
							
								21 34
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  =  𝑅 )  →  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑅  ∨  𝑄 ) )  =  𝑅 )  | 
						
						
							| 36 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  𝐾  ∈  HL )  | 
						
						
							| 37 | 
							
								
							 | 
							simpl21 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 38 | 
							
								
							 | 
							simpl23 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 39 | 
							
								
							 | 
							simpl22 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 40 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 41 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  𝑅  ≤  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 42 | 
							
								5 6 7 41
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  𝑅  ≤  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 43 | 
							
								26 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 44 | 
							
								10 43
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 45 | 
							
								26 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 46 | 
							
								5 6 7 45
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 47 | 
							
								26 1 2
							 | 
							latjle12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑄  ≤  ( 𝑃  ∨  𝑅 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑅 ) )  ↔  ( 𝑄  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 48 | 
							
								25 44 28 46 47
							 | 
							syl13anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( ( 𝑄  ≤  ( 𝑃  ∨  𝑅 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑅 ) )  ↔  ( 𝑄  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							biimpd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( ( 𝑄  ≤  ( 𝑃  ∨  𝑅 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑅 ) )  →  ( 𝑄  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 50 | 
							
								42 49
							 | 
							mpan2d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑄  ≤  ( 𝑃  ∨  𝑅 )  →  ( 𝑄  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  ( 𝑄  ≤  ( 𝑃  ∨  𝑅 )  →  ( 𝑄  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  𝑄  ≠  𝑅 )  | 
						
						
							| 53 | 
							
								1 2 4
							 | 
							ps-1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴  ∧  𝑄  ≠  𝑅 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( ( 𝑄  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑅 )  ↔  ( 𝑄  ∨  𝑅 )  =  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 54 | 
							
								36 39 38 52 37 38 53
							 | 
							syl132anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  ( ( 𝑄  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑅 )  ↔  ( 𝑄  ∨  𝑅 )  =  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							biimpd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  ( ( 𝑄  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑅 )  →  ( 𝑄  ∨  𝑅 )  =  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝑄  ∨  𝑅 )  =  ( 𝑃  ∨  𝑅 )  ↔  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							imbitrdi | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  ( ( 𝑄  ∨  𝑅 )  ≤  ( 𝑃  ∨  𝑅 )  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 58 | 
							
								51 57
							 | 
							syld | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  ( 𝑄  ≤  ( 𝑃  ∨  𝑅 )  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							necon3ad | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  ( ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 )  →  ¬  𝑄  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 60 | 
							
								40 59
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  ¬  𝑄  ≤  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 61 | 
							
								1 2 3 4
							 | 
							2llnma1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑅  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  𝑅 ) )  →  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑅  ∨  𝑄 ) )  =  𝑅 )  | 
						
						
							| 62 | 
							
								36 37 38 39 60 61
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  ∧  𝑄  ≠  𝑅 )  →  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑅  ∨  𝑄 ) )  =  𝑅 )  | 
						
						
							| 63 | 
							
								35 62
							 | 
							pm2.61dane | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( ( 𝑅  ∨  𝑃 )  ∧  ( 𝑅  ∨  𝑄 ) )  =  𝑅 )  | 
						
						
							| 64 | 
							
								13 63
							 | 
							eqtrd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ∨  𝑅 )  ≠  ( 𝑄  ∨  𝑅 ) )  →  ( ( 𝑃  ∨  𝑅 )  ∧  ( 𝑄  ∨  𝑅 ) )  =  𝑅 )  |