Metamath Proof Explorer


Theorem 2llnne2N

Description: Condition implying that two intersecting lines are different. (Contributed by NM, 13-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2lnne.l = ( le ‘ 𝐾 )
2lnne.j = ( join ‘ 𝐾 )
2lnne.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion 2llnne2N ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑅𝐴 ) ∧ ¬ 𝑃 ( 𝑅 𝑄 ) ) → ( 𝑅 𝑃 ) ≠ ( 𝑅 𝑄 ) )

Proof

Step Hyp Ref Expression
1 2lnne.l = ( le ‘ 𝐾 )
2 2lnne.j = ( join ‘ 𝐾 )
3 2lnne.a 𝐴 = ( Atoms ‘ 𝐾 )
4 simpl ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑅𝐴 ) ) → 𝐾 ∈ HL )
5 simprr ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑅𝐴 ) ) → 𝑅𝐴 )
6 simprl ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑅𝐴 ) ) → 𝑃𝐴 )
7 1 2 3 hlatlej2 ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴 ) → 𝑃 ( 𝑅 𝑃 ) )
8 4 5 6 7 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑅𝐴 ) ) → 𝑃 ( 𝑅 𝑃 ) )
9 breq2 ( ( 𝑅 𝑃 ) = ( 𝑅 𝑄 ) → ( 𝑃 ( 𝑅 𝑃 ) ↔ 𝑃 ( 𝑅 𝑄 ) ) )
10 8 9 syl5ibcom ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑅𝐴 ) ) → ( ( 𝑅 𝑃 ) = ( 𝑅 𝑄 ) → 𝑃 ( 𝑅 𝑄 ) ) )
11 10 necon3bd ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑅𝐴 ) ) → ( ¬ 𝑃 ( 𝑅 𝑄 ) → ( 𝑅 𝑃 ) ≠ ( 𝑅 𝑄 ) ) )
12 11 3impia ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑅𝐴 ) ∧ ¬ 𝑃 ( 𝑅 𝑄 ) ) → ( 𝑅 𝑃 ) ≠ ( 𝑅 𝑄 ) )