| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2lnne.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
2lnne.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
2lnne.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
| 5 |
|
simprr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) |
| 6 |
|
simprl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
| 7 |
1 2 3
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑅 ∨ 𝑃 ) ) |
| 8 |
4 5 6 7
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑃 ≤ ( 𝑅 ∨ 𝑃 ) ) |
| 9 |
|
breq2 |
⊢ ( ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) → ( 𝑃 ≤ ( 𝑅 ∨ 𝑃 ) ↔ 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ) ) |
| 10 |
8 9
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) → 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ) ) |
| 11 |
10
|
necon3bd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ¬ 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) → ( 𝑅 ∨ 𝑃 ) ≠ ( 𝑅 ∨ 𝑄 ) ) ) |
| 12 |
11
|
3impia |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ) → ( 𝑅 ∨ 𝑃 ) ≠ ( 𝑅 ∨ 𝑄 ) ) |