Step |
Hyp |
Ref |
Expression |
1 |
|
sq3 |
⊢ ( 3 ↑ 2 ) = 9 |
2 |
1
|
eqcomi |
⊢ 9 = ( 3 ↑ 2 ) |
3 |
2
|
oveq2i |
⊢ ( 2 logb 9 ) = ( 2 logb ( 3 ↑ 2 ) ) |
4 |
|
2cn |
⊢ 2 ∈ ℂ |
5 |
|
2ne0 |
⊢ 2 ≠ 0 |
6 |
|
1ne2 |
⊢ 1 ≠ 2 |
7 |
6
|
necomi |
⊢ 2 ≠ 1 |
8 |
|
eldifpr |
⊢ ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) ) |
9 |
4 5 7 8
|
mpbir3an |
⊢ 2 ∈ ( ℂ ∖ { 0 , 1 } ) |
10 |
|
3rp |
⊢ 3 ∈ ℝ+ |
11 |
|
2z |
⊢ 2 ∈ ℤ |
12 |
|
relogbzexp |
⊢ ( ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 3 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( 2 logb ( 3 ↑ 2 ) ) = ( 2 · ( 2 logb 3 ) ) ) |
13 |
9 10 11 12
|
mp3an |
⊢ ( 2 logb ( 3 ↑ 2 ) ) = ( 2 · ( 2 logb 3 ) ) |
14 |
3 13
|
eqtri |
⊢ ( 2 logb 9 ) = ( 2 · ( 2 logb 3 ) ) |
15 |
|
3cn |
⊢ 3 ∈ ℂ |
16 |
|
3ne0 |
⊢ 3 ≠ 0 |
17 |
|
eldifsn |
⊢ ( 3 ∈ ( ℂ ∖ { 0 } ) ↔ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) |
18 |
15 16 17
|
mpbir2an |
⊢ 3 ∈ ( ℂ ∖ { 0 } ) |
19 |
|
logbcl |
⊢ ( ( 2 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 3 ∈ ( ℂ ∖ { 0 } ) ) → ( 2 logb 3 ) ∈ ℂ ) |
20 |
9 18 19
|
mp2an |
⊢ ( 2 logb 3 ) ∈ ℂ |
21 |
4 20
|
mulcomi |
⊢ ( 2 · ( 2 logb 3 ) ) = ( ( 2 logb 3 ) · 2 ) |
22 |
|
2logb3irr |
⊢ ( 2 logb 3 ) ∈ ( ℝ ∖ ℚ ) |
23 |
|
zq |
⊢ ( 2 ∈ ℤ → 2 ∈ ℚ ) |
24 |
11 23
|
ax-mp |
⊢ 2 ∈ ℚ |
25 |
|
irrmul |
⊢ ( ( ( 2 logb 3 ) ∈ ( ℝ ∖ ℚ ) ∧ 2 ∈ ℚ ∧ 2 ≠ 0 ) → ( ( 2 logb 3 ) · 2 ) ∈ ( ℝ ∖ ℚ ) ) |
26 |
22 24 5 25
|
mp3an |
⊢ ( ( 2 logb 3 ) · 2 ) ∈ ( ℝ ∖ ℚ ) |
27 |
21 26
|
eqeltri |
⊢ ( 2 · ( 2 logb 3 ) ) ∈ ( ℝ ∖ ℚ ) |
28 |
14 27
|
eqeltri |
⊢ ( 2 logb 9 ) ∈ ( ℝ ∖ ℚ ) |