| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2lplnm.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 2 |
|
2lplnm.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 3 |
|
2lplnm.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 4 |
|
2lplnm.n |
⊢ 𝑁 = ( LLines ‘ 𝐾 ) |
| 5 |
|
2lplnm.p |
⊢ 𝑃 = ( LPlanes ‘ 𝐾 ) |
| 6 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) → 𝑌 ∈ 𝑃 ) |
| 7 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) → 𝐾 ∈ HL ) |
| 8 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 10 |
9 5
|
lplnbase |
⊢ ( 𝑋 ∈ 𝑃 → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
| 11 |
9 5
|
lplnbase |
⊢ ( 𝑌 ∈ 𝑃 → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 12 |
9 2
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 13 |
8 10 11 12
|
syl3an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( 𝑋 ∧ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 15 |
11
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 17 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → 𝐾 ∈ HL ) |
| 18 |
10
|
3ad2ant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
9 1 2 3
|
cvrexch |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) ) |
| 20 |
17 18 15 19
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) ) |
| 21 |
20
|
biimpar |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) → ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ) |
| 22 |
9 3 4 5
|
llncvrlpln |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∧ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ) → ( ( 𝑋 ∧ 𝑌 ) ∈ 𝑁 ↔ 𝑌 ∈ 𝑃 ) ) |
| 23 |
7 14 16 21 22
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∈ 𝑁 ↔ 𝑌 ∈ 𝑃 ) ) |
| 24 |
6 23
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝑁 ) |