Metamath Proof Explorer


Theorem 2lt10

Description: 2 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 2lt10 2 < 1 0

Proof

Step Hyp Ref Expression
1 2lt3 2 < 3
2 3lt10 3 < 1 0
3 2re 2 ∈ ℝ
4 3re 3 ∈ ℝ
5 10re 1 0 ∈ ℝ
6 3 4 5 lttri ( ( 2 < 3 ∧ 3 < 1 0 ) → 2 < 1 0 )
7 1 2 6 mp2an 2 < 1 0