| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2mo2 |
⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 2 |
|
nfmo1 |
⊢ Ⅎ 𝑥 ∃* 𝑥 ∃ 𝑦 𝜑 |
| 3 |
|
nfe1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 𝜑 |
| 4 |
3
|
nfmov |
⊢ Ⅎ 𝑥 ∃* 𝑦 ∃ 𝑥 𝜑 |
| 5 |
2 4
|
nfan |
⊢ Ⅎ 𝑥 ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) |
| 6 |
|
nfe1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 𝜑 |
| 7 |
6
|
nfmov |
⊢ Ⅎ 𝑦 ∃* 𝑥 ∃ 𝑦 𝜑 |
| 8 |
|
nfmo1 |
⊢ Ⅎ 𝑦 ∃* 𝑦 ∃ 𝑥 𝜑 |
| 9 |
7 8
|
nfan |
⊢ Ⅎ 𝑦 ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) |
| 10 |
|
19.8a |
⊢ ( 𝜑 → ∃ 𝑦 𝜑 ) |
| 11 |
|
spsbe |
⊢ ( [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑦 𝜑 ) |
| 12 |
11
|
sbimi |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑥 ] ∃ 𝑦 𝜑 ) |
| 13 |
|
nfv |
⊢ Ⅎ 𝑧 ∃ 𝑦 𝜑 |
| 14 |
13
|
mo3 |
⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑧 ( ( ∃ 𝑦 𝜑 ∧ [ 𝑧 / 𝑥 ] ∃ 𝑦 𝜑 ) → 𝑥 = 𝑧 ) ) |
| 15 |
14
|
biimpi |
⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 → ∀ 𝑥 ∀ 𝑧 ( ( ∃ 𝑦 𝜑 ∧ [ 𝑧 / 𝑥 ] ∃ 𝑦 𝜑 ) → 𝑥 = 𝑧 ) ) |
| 16 |
15
|
19.21bbi |
⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 → ( ( ∃ 𝑦 𝜑 ∧ [ 𝑧 / 𝑥 ] ∃ 𝑦 𝜑 ) → 𝑥 = 𝑧 ) ) |
| 17 |
10 12 16
|
syl2ani |
⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 → ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → 𝑥 = 𝑧 ) ) |
| 18 |
|
19.8a |
⊢ ( 𝜑 → ∃ 𝑥 𝜑 ) |
| 19 |
|
sbcom2 |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 ) |
| 20 |
|
spsbe |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 → ∃ 𝑥 𝜑 ) |
| 21 |
20
|
sbimi |
⊢ ( [ 𝑤 / 𝑦 ] [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑤 / 𝑦 ] ∃ 𝑥 𝜑 ) |
| 22 |
19 21
|
sylbi |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → [ 𝑤 / 𝑦 ] ∃ 𝑥 𝜑 ) |
| 23 |
|
nfv |
⊢ Ⅎ 𝑤 ∃ 𝑥 𝜑 |
| 24 |
23
|
mo3 |
⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑤 ( ( ∃ 𝑥 𝜑 ∧ [ 𝑤 / 𝑦 ] ∃ 𝑥 𝜑 ) → 𝑦 = 𝑤 ) ) |
| 25 |
24
|
biimpi |
⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 → ∀ 𝑦 ∀ 𝑤 ( ( ∃ 𝑥 𝜑 ∧ [ 𝑤 / 𝑦 ] ∃ 𝑥 𝜑 ) → 𝑦 = 𝑤 ) ) |
| 26 |
25
|
19.21bbi |
⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 → ( ( ∃ 𝑥 𝜑 ∧ [ 𝑤 / 𝑦 ] ∃ 𝑥 𝜑 ) → 𝑦 = 𝑤 ) ) |
| 27 |
18 22 26
|
syl2ani |
⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 → ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → 𝑦 = 𝑤 ) ) |
| 28 |
17 27
|
anim12ii |
⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) → ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 29 |
9 28
|
alrimi |
⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) → ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 30 |
5 29
|
alrimi |
⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 31 |
30
|
alrimivv |
⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) → ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 32 |
1 31
|
sylbir |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 33 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 |
| 34 |
|
nfs1v |
⊢ Ⅎ 𝑦 [ 𝑤 / 𝑦 ] 𝜑 |
| 35 |
34
|
nfsbv |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 |
| 36 |
|
pm3.21 |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ( 𝜑 → ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ) ) |
| 37 |
36
|
imim1d |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ( ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 38 |
35 37
|
alimd |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ( ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 39 |
33 38
|
alimd |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 40 |
39
|
com12 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 41 |
40
|
aleximi |
⊢ ( ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 42 |
41
|
aleximi |
⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 43 |
|
2nexaln |
⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) |
| 44 |
|
nfv |
⊢ Ⅎ 𝑤 𝜑 |
| 45 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
| 46 |
44 45
|
2sb8ef |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
| 47 |
43 46
|
xchnxbi |
⊢ ( ¬ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) |
| 48 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 49 |
48
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 50 |
49
|
2eximi |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 51 |
50
|
19.23bi |
⊢ ( ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 52 |
51
|
19.23bi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 53 |
47 52
|
sylbi |
⊢ ( ¬ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 54 |
42 53
|
pm2.61d1 |
⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 55 |
32 54
|
impbii |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 56 |
|
alrot4 |
⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 57 |
55 56
|
bitri |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |