Step |
Hyp |
Ref |
Expression |
1 |
|
exdistrv |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∃ 𝑧 ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ) |
2 |
|
jcab |
⊢ ( ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
3 |
2
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
4 |
|
19.26-2 |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 → 𝑥 = 𝑧 ) ∧ ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑤 ) ) ) |
5 |
|
19.23v |
⊢ ( ∀ 𝑦 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ) |
6 |
5
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ) |
7 |
|
alcom |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑦 = 𝑤 ) ) |
8 |
|
19.23v |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) |
9 |
8
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) |
10 |
7 9
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) |
11 |
6 10
|
anbi12i |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ) |
12 |
3 4 11
|
3bitri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ) |
13 |
12
|
2exbii |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∃ 𝑤 ( ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ) |
14 |
|
df-mo |
⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ) |
15 |
|
df-mo |
⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) |
16 |
14 15
|
anbi12i |
⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑧 ∀ 𝑥 ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ∧ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑥 𝜑 → 𝑦 = 𝑤 ) ) ) |
17 |
1 13 16
|
3bitr4ri |
⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑦 ∃ 𝑥 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |