Step |
Hyp |
Ref |
Expression |
1 |
|
2mos.1 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
2mo |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
3 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 = 𝑧 |
4 |
3
|
sbrim |
⊢ ( [ 𝑤 / 𝑦 ] ( 𝑥 = 𝑧 → 𝜑 ) ↔ ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
5 |
1
|
expcom |
⊢ ( 𝑦 = 𝑤 → ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) ) |
6 |
5
|
pm5.74d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑥 = 𝑧 → 𝜑 ) ↔ ( 𝑥 = 𝑧 → 𝜓 ) ) ) |
7 |
6
|
sbievw |
⊢ ( [ 𝑤 / 𝑦 ] ( 𝑥 = 𝑧 → 𝜑 ) ↔ ( 𝑥 = 𝑧 → 𝜓 ) ) |
8 |
4 7
|
bitr3i |
⊢ ( ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ( 𝑥 = 𝑧 → 𝜓 ) ) |
9 |
8
|
pm5.74ri |
⊢ ( 𝑥 = 𝑧 → ( [ 𝑤 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
10 |
9
|
sbievw |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
11 |
10
|
anbi2i |
⊢ ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ( 𝜑 ∧ 𝜓 ) ) |
12 |
11
|
imbi1i |
⊢ ( ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
13 |
12
|
2albii |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
14 |
13
|
2albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
15 |
2 14
|
bitri |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |