| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2mpo0.o | ⊢ 𝑂  =  ( 𝑥  ∈  𝐴 ,  𝑦  ∈  𝐵  ↦  𝐸 ) | 
						
							| 2 |  | 2mpo0.u | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 𝑂 𝑌 )  =  ( 𝑠  ∈  𝐶 ,  𝑡  ∈  𝐷  ↦  𝐹 ) ) | 
						
							| 3 |  | ianor | ⊢ ( ¬  ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝑆  ∈  𝐶  ∧  𝑇  ∈  𝐷 ) )  ↔  ( ¬  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∨  ¬  ( 𝑆  ∈  𝐶  ∧  𝑇  ∈  𝐷 ) ) ) | 
						
							| 4 | 1 | mpondm0 | ⊢ ( ¬  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 𝑂 𝑌 )  =  ∅ ) | 
						
							| 5 | 4 | oveqd | ⊢ ( ¬  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 )  =  ( 𝑆 ∅ 𝑇 ) ) | 
						
							| 6 |  | 0ov | ⊢ ( 𝑆 ∅ 𝑇 )  =  ∅ | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( ¬  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 )  =  ∅ ) | 
						
							| 8 |  | notnotb | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ↔  ¬  ¬  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 ) ) | 
						
							| 9 | 2 | adantr | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  ¬  ( 𝑆  ∈  𝐶  ∧  𝑇  ∈  𝐷 ) )  →  ( 𝑋 𝑂 𝑌 )  =  ( 𝑠  ∈  𝐶 ,  𝑡  ∈  𝐷  ↦  𝐹 ) ) | 
						
							| 10 | 9 | oveqd | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  ¬  ( 𝑆  ∈  𝐶  ∧  𝑇  ∈  𝐷 ) )  →  ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 )  =  ( 𝑆 ( 𝑠  ∈  𝐶 ,  𝑡  ∈  𝐷  ↦  𝐹 ) 𝑇 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑠  ∈  𝐶 ,  𝑡  ∈  𝐷  ↦  𝐹 )  =  ( 𝑠  ∈  𝐶 ,  𝑡  ∈  𝐷  ↦  𝐹 ) | 
						
							| 12 | 11 | mpondm0 | ⊢ ( ¬  ( 𝑆  ∈  𝐶  ∧  𝑇  ∈  𝐷 )  →  ( 𝑆 ( 𝑠  ∈  𝐶 ,  𝑡  ∈  𝐷  ↦  𝐹 ) 𝑇 )  =  ∅ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  ¬  ( 𝑆  ∈  𝐶  ∧  𝑇  ∈  𝐷 ) )  →  ( 𝑆 ( 𝑠  ∈  𝐶 ,  𝑡  ∈  𝐷  ↦  𝐹 ) 𝑇 )  =  ∅ ) | 
						
							| 14 | 10 13 | eqtrd | ⊢ ( ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  ¬  ( 𝑆  ∈  𝐶  ∧  𝑇  ∈  𝐷 ) )  →  ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 )  =  ∅ ) | 
						
							| 15 | 8 14 | sylanbr | ⊢ ( ( ¬  ¬  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  ¬  ( 𝑆  ∈  𝐶  ∧  𝑇  ∈  𝐷 ) )  →  ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 )  =  ∅ ) | 
						
							| 16 | 7 15 | jaoi3 | ⊢ ( ( ¬  ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∨  ¬  ( 𝑆  ∈  𝐶  ∧  𝑇  ∈  𝐷 ) )  →  ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 )  =  ∅ ) | 
						
							| 17 | 3 16 | sylbi | ⊢ ( ¬  ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝑆  ∈  𝐶  ∧  𝑇  ∈  𝐷 ) )  →  ( 𝑆 ( 𝑋 𝑂 𝑌 ) 𝑇 )  =  ∅ ) |