Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
2 |
|
0red |
⊢ ( 𝐴 ∈ ℤ → 0 ∈ ℝ ) |
3 |
1 2
|
leloed |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ≤ 0 ↔ ( 𝐴 < 0 ∨ 𝐴 = 0 ) ) ) |
4 |
|
prmnn |
⊢ ( ( 2 · 𝐴 ) ∈ ℙ → ( 2 · 𝐴 ) ∈ ℕ ) |
5 |
|
nnnn0 |
⊢ ( ( 2 · 𝐴 ) ∈ ℕ → ( 2 · 𝐴 ) ∈ ℕ0 ) |
6 |
|
nn0ge0 |
⊢ ( ( 2 · 𝐴 ) ∈ ℕ0 → 0 ≤ ( 2 · 𝐴 ) ) |
7 |
|
2pos |
⊢ 0 < 2 |
8 |
7
|
a1i |
⊢ ( 𝐴 ∈ ℤ → 0 < 2 ) |
9 |
8
|
anim1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( 0 < 2 ∧ 𝐴 < 0 ) ) |
10 |
9
|
olcd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( ( 2 < 0 ∧ 0 < 𝐴 ) ∨ ( 0 < 2 ∧ 𝐴 < 0 ) ) ) |
11 |
|
2re |
⊢ 2 ∈ ℝ |
12 |
11
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → 2 ∈ ℝ ) |
13 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ ) |
14 |
12 13
|
mul2lt0bi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( ( 2 · 𝐴 ) < 0 ↔ ( ( 2 < 0 ∧ 0 < 𝐴 ) ∨ ( 0 < 2 ∧ 𝐴 < 0 ) ) ) ) |
15 |
10 14
|
mpbird |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( 2 · 𝐴 ) < 0 ) |
16 |
12 13
|
remulcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
17 |
|
0red |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → 0 ∈ ℝ ) |
18 |
16 17
|
ltnled |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ( ( 2 · 𝐴 ) < 0 ↔ ¬ 0 ≤ ( 2 · 𝐴 ) ) ) |
19 |
15 18
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 < 0 ) → ¬ 0 ≤ ( 2 · 𝐴 ) ) |
20 |
19
|
ex |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 < 0 → ¬ 0 ≤ ( 2 · 𝐴 ) ) ) |
21 |
20
|
con2d |
⊢ ( 𝐴 ∈ ℤ → ( 0 ≤ ( 2 · 𝐴 ) → ¬ 𝐴 < 0 ) ) |
22 |
21
|
com12 |
⊢ ( 0 ≤ ( 2 · 𝐴 ) → ( 𝐴 ∈ ℤ → ¬ 𝐴 < 0 ) ) |
23 |
6 22
|
syl |
⊢ ( ( 2 · 𝐴 ) ∈ ℕ0 → ( 𝐴 ∈ ℤ → ¬ 𝐴 < 0 ) ) |
24 |
4 5 23
|
3syl |
⊢ ( ( 2 · 𝐴 ) ∈ ℙ → ( 𝐴 ∈ ℤ → ¬ 𝐴 < 0 ) ) |
25 |
24
|
com12 |
⊢ ( 𝐴 ∈ ℤ → ( ( 2 · 𝐴 ) ∈ ℙ → ¬ 𝐴 < 0 ) ) |
26 |
25
|
con2d |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 < 0 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) |
27 |
26
|
a1dd |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 < 0 → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) ) |
28 |
|
oveq2 |
⊢ ( 𝐴 = 0 → ( 2 · 𝐴 ) = ( 2 · 0 ) ) |
29 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
30 |
28 29
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( 2 · 𝐴 ) = 0 ) |
31 |
|
0nprm |
⊢ ¬ 0 ∈ ℙ |
32 |
31
|
a1i |
⊢ ( 𝐴 = 0 → ¬ 0 ∈ ℙ ) |
33 |
30 32
|
eqneltrd |
⊢ ( 𝐴 = 0 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) |
34 |
33
|
a1i13 |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 = 0 → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) ) |
35 |
27 34
|
jaod |
⊢ ( 𝐴 ∈ ℤ → ( ( 𝐴 < 0 ∨ 𝐴 = 0 ) → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) ) |
36 |
3 35
|
sylbid |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ≤ 0 → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) ) |
37 |
|
2z |
⊢ 2 ∈ ℤ |
38 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
39 |
37 38
|
ax-mp |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
40 |
37
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1 ) → 2 ∈ ℤ ) |
41 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1 ) → 𝐴 ∈ ℤ ) |
42 |
|
df-ne |
⊢ ( 𝐴 ≠ 1 ↔ ¬ 𝐴 = 1 ) |
43 |
|
1red |
⊢ ( 𝐴 ∈ ℤ → 1 ∈ ℝ ) |
44 |
43 1
|
ltlend |
⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 ↔ ( 1 ≤ 𝐴 ∧ 𝐴 ≠ 1 ) ) ) |
45 |
|
1zzd |
⊢ ( 𝐴 ∈ ℤ → 1 ∈ ℤ ) |
46 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 1 < 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) ) |
47 |
45 46
|
mpancom |
⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) ) |
48 |
47
|
biimpd |
⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 → ( 1 + 1 ) ≤ 𝐴 ) ) |
49 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
50 |
49
|
breq1i |
⊢ ( 2 ≤ 𝐴 ↔ ( 1 + 1 ) ≤ 𝐴 ) |
51 |
48 50
|
syl6ibr |
⊢ ( 𝐴 ∈ ℤ → ( 1 < 𝐴 → 2 ≤ 𝐴 ) ) |
52 |
44 51
|
sylbird |
⊢ ( 𝐴 ∈ ℤ → ( ( 1 ≤ 𝐴 ∧ 𝐴 ≠ 1 ) → 2 ≤ 𝐴 ) ) |
53 |
52
|
expdimp |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ) → ( 𝐴 ≠ 1 → 2 ≤ 𝐴 ) ) |
54 |
42 53
|
syl5bir |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ) → ( ¬ 𝐴 = 1 → 2 ≤ 𝐴 ) ) |
55 |
54
|
3impia |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1 ) → 2 ≤ 𝐴 ) |
56 |
|
eluz2 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 2 ≤ 𝐴 ) ) |
57 |
40 41 55 56
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1 ) → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
58 |
|
nprm |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 2 · 𝐴 ) ∈ ℙ ) |
59 |
39 57 58
|
sylancr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ ¬ 𝐴 = 1 ) → ¬ ( 2 · 𝐴 ) ∈ ℙ ) |
60 |
59
|
3exp |
⊢ ( 𝐴 ∈ ℤ → ( 1 ≤ 𝐴 → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) ) |
61 |
|
zle0orge1 |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ≤ 0 ∨ 1 ≤ 𝐴 ) ) |
62 |
36 60 61
|
mpjaod |
⊢ ( 𝐴 ∈ ℤ → ( ¬ 𝐴 = 1 → ¬ ( 2 · 𝐴 ) ∈ ℙ ) ) |
63 |
62
|
con4d |
⊢ ( 𝐴 ∈ ℤ → ( ( 2 · 𝐴 ) ∈ ℙ → 𝐴 = 1 ) ) |
64 |
|
oveq2 |
⊢ ( 𝐴 = 1 → ( 2 · 𝐴 ) = ( 2 · 1 ) ) |
65 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
66 |
64 65
|
eqtrdi |
⊢ ( 𝐴 = 1 → ( 2 · 𝐴 ) = 2 ) |
67 |
|
2prm |
⊢ 2 ∈ ℙ |
68 |
66 67
|
eqeltrdi |
⊢ ( 𝐴 = 1 → ( 2 · 𝐴 ) ∈ ℙ ) |
69 |
63 68
|
impbid1 |
⊢ ( 𝐴 ∈ ℤ → ( ( 2 · 𝐴 ) ∈ ℙ ↔ 𝐴 = 1 ) ) |