Description: Part of theorem *11.5 in WhiteheadRussell p. 164. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2nalexn | ⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ¬ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex | ⊢ ( ∃ 𝑥 ∃ 𝑦 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ¬ ∃ 𝑦 ¬ 𝜑 ) | |
| 2 | alex | ⊢ ( ∀ 𝑦 𝜑 ↔ ¬ ∃ 𝑦 ¬ 𝜑 ) | |
| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∀ 𝑥 ¬ ∃ 𝑦 ¬ 𝜑 ) |
| 4 | 1 3 | xchbinxr | ⊢ ( ∃ 𝑥 ∃ 𝑦 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∀ 𝑦 𝜑 ) |
| 5 | 4 | bicomi | ⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ¬ 𝜑 ) |