Metamath Proof Explorer


Theorem 2nalexn

Description: Part of theorem *11.5 in WhiteheadRussell p. 164. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2nalexn ( ¬ ∀ 𝑥𝑦 𝜑 ↔ ∃ 𝑥𝑦 ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 df-ex ( ∃ 𝑥𝑦 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ¬ ∃ 𝑦 ¬ 𝜑 )
2 alex ( ∀ 𝑦 𝜑 ↔ ¬ ∃ 𝑦 ¬ 𝜑 )
3 2 albii ( ∀ 𝑥𝑦 𝜑 ↔ ∀ 𝑥 ¬ ∃ 𝑦 ¬ 𝜑 )
4 1 3 xchbinxr ( ∃ 𝑥𝑦 ¬ 𝜑 ↔ ¬ ∀ 𝑥𝑦 𝜑 )
5 4 bicomi ( ¬ ∀ 𝑥𝑦 𝜑 ↔ ∃ 𝑥𝑦 ¬ 𝜑 )