| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2ndctop | ⊢ ( 𝐽  ∈  2ndω  →  𝐽  ∈  Top ) | 
						
							| 2 |  | is2ndc | ⊢ ( 𝐽  ∈  2ndω  ↔  ∃ 𝑏  ∈  TopBases ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝐽 ) ) | 
						
							| 3 |  | ssrab2 | ⊢ { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ⊆  𝑏 | 
						
							| 4 |  | bastg | ⊢ ( 𝑏  ∈  TopBases  →  𝑏  ⊆  ( topGen ‘ 𝑏 ) ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  →  𝑏  ⊆  ( topGen ‘ 𝑏 ) ) | 
						
							| 6 | 3 5 | sstrid | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  →  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ⊆  ( topGen ‘ 𝑏 ) ) | 
						
							| 7 |  | fvex | ⊢ ( topGen ‘ 𝑏 )  ∈  V | 
						
							| 8 | 7 | elpw2 | ⊢ ( { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ∈  𝒫  ( topGen ‘ 𝑏 )  ↔  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ⊆  ( topGen ‘ 𝑏 ) ) | 
						
							| 9 | 6 8 | sylibr | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  →  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ∈  𝒫  ( topGen ‘ 𝑏 ) ) | 
						
							| 10 |  | vex | ⊢ 𝑏  ∈  V | 
						
							| 11 |  | ssdomg | ⊢ ( 𝑏  ∈  V  →  ( { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ⊆  𝑏  →  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ≼  𝑏 ) ) | 
						
							| 12 | 10 3 11 | mp2 | ⊢ { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ≼  𝑏 | 
						
							| 13 |  | simp2 | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  →  𝑏  ≼  ω ) | 
						
							| 14 |  | domtr | ⊢ ( ( { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ≼  𝑏  ∧  𝑏  ≼  ω )  →  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ≼  ω ) | 
						
							| 15 | 12 13 14 | sylancr | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  →  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ≼  ω ) | 
						
							| 16 |  | eltg2b | ⊢ ( 𝑏  ∈  TopBases  →  ( 𝑜  ∈  ( topGen ‘ 𝑏 )  ↔  ∀ 𝑦  ∈  𝑜 ∃ 𝑡  ∈  𝑏 ( 𝑦  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) ) ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  →  ( 𝑜  ∈  ( topGen ‘ 𝑏 )  ↔  ∀ 𝑦  ∈  𝑜 ∃ 𝑡  ∈  𝑏 ( 𝑦  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) ) ) | 
						
							| 18 |  | elequ1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  𝑡  ↔  𝑥  ∈  𝑡 ) ) | 
						
							| 19 | 18 | anbi1d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  ∈  𝑡  ∧  𝑡  ⊆  𝑜 )  ↔  ( 𝑥  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) ) ) | 
						
							| 20 | 19 | rexbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑡  ∈  𝑏 ( 𝑦  ∈  𝑡  ∧  𝑡  ⊆  𝑜 )  ↔  ∃ 𝑡  ∈  𝑏 ( 𝑥  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) ) ) | 
						
							| 21 | 20 | rspccv | ⊢ ( ∀ 𝑦  ∈  𝑜 ∃ 𝑡  ∈  𝑏 ( 𝑦  ∈  𝑡  ∧  𝑡  ⊆  𝑜 )  →  ( 𝑥  ∈  𝑜  →  ∃ 𝑡  ∈  𝑏 ( 𝑥  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) ) ) | 
						
							| 22 |  | id | ⊢ ( ( 𝑡  ∈  𝑏  ∧  𝑥  ∈  𝑡 )  →  ( 𝑡  ∈  𝑏  ∧  𝑥  ∈  𝑡 ) ) | 
						
							| 23 | 22 | adantrr | ⊢ ( ( 𝑡  ∈  𝑏  ∧  ( 𝑥  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) )  →  ( 𝑡  ∈  𝑏  ∧  𝑥  ∈  𝑡 ) ) | 
						
							| 24 |  | elequ2 | ⊢ ( 𝑞  =  𝑡  →  ( 𝑥  ∈  𝑞  ↔  𝑥  ∈  𝑡 ) ) | 
						
							| 25 | 24 | elrab | ⊢ ( 𝑡  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ↔  ( 𝑡  ∈  𝑏  ∧  𝑥  ∈  𝑡 ) ) | 
						
							| 26 | 23 25 | sylibr | ⊢ ( ( 𝑡  ∈  𝑏  ∧  ( 𝑥  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) )  →  𝑡  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ) | 
						
							| 27 |  | simprr | ⊢ ( ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  ∧  ( 𝑡  ∈  𝑏  ∧  ( 𝑥  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) ) )  →  ( 𝑥  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) ) | 
						
							| 28 |  | elequ2 | ⊢ ( 𝑝  =  𝑡  →  ( 𝑥  ∈  𝑝  ↔  𝑥  ∈  𝑡 ) ) | 
						
							| 29 |  | sseq1 | ⊢ ( 𝑝  =  𝑡  →  ( 𝑝  ⊆  𝑜  ↔  𝑡  ⊆  𝑜 ) ) | 
						
							| 30 | 28 29 | anbi12d | ⊢ ( 𝑝  =  𝑡  →  ( ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 )  ↔  ( 𝑥  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) ) ) | 
						
							| 31 | 30 | rspcev | ⊢ ( ( 𝑡  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ∧  ( 𝑥  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) )  →  ∃ 𝑝  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) | 
						
							| 32 | 26 27 31 | syl2an2 | ⊢ ( ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  ∧  ( 𝑡  ∈  𝑏  ∧  ( 𝑥  ∈  𝑡  ∧  𝑡  ⊆  𝑜 ) ) )  →  ∃ 𝑝  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) | 
						
							| 33 | 32 | rexlimdvaa | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  →  ( ∃ 𝑡  ∈  𝑏 ( 𝑥  ∈  𝑡  ∧  𝑡  ⊆  𝑜 )  →  ∃ 𝑝  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) | 
						
							| 34 | 21 33 | syl9r | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  →  ( ∀ 𝑦  ∈  𝑜 ∃ 𝑡  ∈  𝑏 ( 𝑦  ∈  𝑡  ∧  𝑡  ⊆  𝑜 )  →  ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) | 
						
							| 35 | 17 34 | sylbid | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  →  ( 𝑜  ∈  ( topGen ‘ 𝑏 )  →  ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) | 
						
							| 36 | 35 | ralrimiv | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  →  ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) | 
						
							| 37 |  | breq1 | ⊢ ( 𝑠  =  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  →  ( 𝑠  ≼  ω  ↔  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ≼  ω ) ) | 
						
							| 38 |  | rexeq | ⊢ ( 𝑠  =  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  →  ( ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 )  ↔  ∃ 𝑝  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) | 
						
							| 39 | 38 | imbi2d | ⊢ ( 𝑠  =  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  →  ( ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) )  ↔  ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) | 
						
							| 40 | 39 | ralbidv | ⊢ ( 𝑠  =  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  →  ( ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) )  ↔  ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) | 
						
							| 41 | 37 40 | anbi12d | ⊢ ( 𝑠  =  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  →  ( ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) )  ↔  ( { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ≼  ω  ∧  ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) ) | 
						
							| 42 | 41 | rspcev | ⊢ ( ( { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ∈  𝒫  ( topGen ‘ 𝑏 )  ∧  ( { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 }  ≼  ω  ∧  ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  { 𝑞  ∈  𝑏  ∣  𝑥  ∈  𝑞 } ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) )  →  ∃ 𝑠  ∈  𝒫  ( topGen ‘ 𝑏 ) ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) | 
						
							| 43 | 9 15 36 42 | syl12anc | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω  ∧  𝑥  ∈  ∪  ( topGen ‘ 𝑏 ) )  →  ∃ 𝑠  ∈  𝒫  ( topGen ‘ 𝑏 ) ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) | 
						
							| 44 | 43 | 3expia | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω )  →  ( 𝑥  ∈  ∪  ( topGen ‘ 𝑏 )  →  ∃ 𝑠  ∈  𝒫  ( topGen ‘ 𝑏 ) ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) ) | 
						
							| 45 |  | unieq | ⊢ ( ( topGen ‘ 𝑏 )  =  𝐽  →  ∪  ( topGen ‘ 𝑏 )  =  ∪  𝐽 ) | 
						
							| 46 | 45 | eleq2d | ⊢ ( ( topGen ‘ 𝑏 )  =  𝐽  →  ( 𝑥  ∈  ∪  ( topGen ‘ 𝑏 )  ↔  𝑥  ∈  ∪  𝐽 ) ) | 
						
							| 47 |  | pweq | ⊢ ( ( topGen ‘ 𝑏 )  =  𝐽  →  𝒫  ( topGen ‘ 𝑏 )  =  𝒫  𝐽 ) | 
						
							| 48 |  | raleq | ⊢ ( ( topGen ‘ 𝑏 )  =  𝐽  →  ( ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) )  ↔  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) | 
						
							| 49 | 48 | anbi2d | ⊢ ( ( topGen ‘ 𝑏 )  =  𝐽  →  ( ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) )  ↔  ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) ) | 
						
							| 50 | 47 49 | rexeqbidv | ⊢ ( ( topGen ‘ 𝑏 )  =  𝐽  →  ( ∃ 𝑠  ∈  𝒫  ( topGen ‘ 𝑏 ) ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) )  ↔  ∃ 𝑠  ∈  𝒫  𝐽 ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) ) | 
						
							| 51 | 46 50 | imbi12d | ⊢ ( ( topGen ‘ 𝑏 )  =  𝐽  →  ( ( 𝑥  ∈  ∪  ( topGen ‘ 𝑏 )  →  ∃ 𝑠  ∈  𝒫  ( topGen ‘ 𝑏 ) ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  ( topGen ‘ 𝑏 ) ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) )  ↔  ( 𝑥  ∈  ∪  𝐽  →  ∃ 𝑠  ∈  𝒫  𝐽 ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) ) ) | 
						
							| 52 | 44 51 | syl5ibcom | ⊢ ( ( 𝑏  ∈  TopBases  ∧  𝑏  ≼  ω )  →  ( ( topGen ‘ 𝑏 )  =  𝐽  →  ( 𝑥  ∈  ∪  𝐽  →  ∃ 𝑠  ∈  𝒫  𝐽 ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) ) ) | 
						
							| 53 | 52 | expimpd | ⊢ ( 𝑏  ∈  TopBases  →  ( ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝐽 )  →  ( 𝑥  ∈  ∪  𝐽  →  ∃ 𝑠  ∈  𝒫  𝐽 ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) ) ) | 
						
							| 54 | 53 | rexlimiv | ⊢ ( ∃ 𝑏  ∈  TopBases ( 𝑏  ≼  ω  ∧  ( topGen ‘ 𝑏 )  =  𝐽 )  →  ( 𝑥  ∈  ∪  𝐽  →  ∃ 𝑠  ∈  𝒫  𝐽 ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) ) | 
						
							| 55 | 2 54 | sylbi | ⊢ ( 𝐽  ∈  2ndω  →  ( 𝑥  ∈  ∪  𝐽  →  ∃ 𝑠  ∈  𝒫  𝐽 ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) ) | 
						
							| 56 | 55 | ralrimiv | ⊢ ( 𝐽  ∈  2ndω  →  ∀ 𝑥  ∈  ∪  𝐽 ∃ 𝑠  ∈  𝒫  𝐽 ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) | 
						
							| 57 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 58 | 57 | is1stc2 | ⊢ ( 𝐽  ∈  1stω  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  ∪  𝐽 ∃ 𝑠  ∈  𝒫  𝐽 ( 𝑠  ≼  ω  ∧  ∀ 𝑜  ∈  𝐽 ( 𝑥  ∈  𝑜  →  ∃ 𝑝  ∈  𝑠 ( 𝑥  ∈  𝑝  ∧  𝑝  ⊆  𝑜 ) ) ) ) ) | 
						
							| 59 | 1 56 58 | sylanbrc | ⊢ ( 𝐽  ∈  2ndω  →  𝐽  ∈  1stω ) |