Step |
Hyp |
Ref |
Expression |
1 |
|
is2ndc |
⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) |
2 |
|
omex |
⊢ ω ∈ V |
3 |
2
|
brdom |
⊢ ( 𝑏 ≼ ω ↔ ∃ 𝑓 𝑓 : 𝑏 –1-1→ ω ) |
4 |
|
ssrab2 |
⊢ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ ran 𝑓 |
5 |
|
f1f |
⊢ ( 𝑓 : 𝑏 –1-1→ ω → 𝑓 : 𝑏 ⟶ ω ) |
6 |
5
|
frnd |
⊢ ( 𝑓 : 𝑏 –1-1→ ω → ran 𝑓 ⊆ ω ) |
7 |
6
|
adantl |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ran 𝑓 ⊆ ω ) |
8 |
4 7
|
sstrid |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ ω ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ ω ) |
10 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ↔ ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝐵 ≠ ∅ ) ) |
11 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) |
12 |
|
tg2 |
⊢ ( ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝑏 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) |
13 |
|
omsson |
⊢ ω ⊆ On |
14 |
8 13
|
sstrdi |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ On ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ On ) |
16 |
|
f1fn |
⊢ ( 𝑓 : 𝑏 –1-1→ ω → 𝑓 Fn 𝑏 ) |
17 |
16
|
ad3antlr |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑓 Fn 𝑏 ) |
18 |
|
simprl |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑧 ∈ 𝑏 ) |
19 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn 𝑏 ∧ 𝑧 ∈ 𝑏 ) → ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) |
20 |
17 18 19
|
syl2anc |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) |
21 |
|
f1f1orn |
⊢ ( 𝑓 : 𝑏 –1-1→ ω → 𝑓 : 𝑏 –1-1-onto→ ran 𝑓 ) |
22 |
21
|
ad3antlr |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑓 : 𝑏 –1-1-onto→ ran 𝑓 ) |
23 |
|
f1ocnvfv1 |
⊢ ( ( 𝑓 : 𝑏 –1-1-onto→ ran 𝑓 ∧ 𝑧 ∈ 𝑏 ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) = 𝑧 ) |
24 |
22 18 23
|
syl2anc |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) = 𝑧 ) |
25 |
|
simprrr |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑧 ⊆ 𝐵 ) |
26 |
|
velpw |
⊢ ( 𝑧 ∈ 𝒫 𝐵 ↔ 𝑧 ⊆ 𝐵 ) |
27 |
25 26
|
sylibr |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑧 ∈ 𝒫 𝐵 ) |
28 |
|
simprrl |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑦 ∈ 𝑧 ) |
29 |
28
|
ne0d |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑧 ≠ ∅ ) |
30 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ≠ ∅ ) ) |
31 |
27 29 30
|
sylanbrc |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑧 ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
32 |
24 31
|
eqeltrd |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
33 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑧 ) → ( ◡ 𝑓 ‘ 𝑛 ) = ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) |
34 |
33
|
eleq1d |
⊢ ( 𝑛 = ( 𝑓 ‘ 𝑧 ) → ( ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) ) |
35 |
34
|
rspcev |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ∧ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) → ∃ 𝑛 ∈ ran 𝑓 ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
36 |
20 32 35
|
syl2anc |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → ∃ 𝑛 ∈ ran 𝑓 ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
37 |
|
rabn0 |
⊢ ( { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ≠ ∅ ↔ ∃ 𝑛 ∈ ran 𝑓 ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
38 |
36 37
|
sylibr |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ≠ ∅ ) |
39 |
|
onint |
⊢ ( ( { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ On ∧ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ≠ ∅ ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
40 |
15 38 39
|
syl2anc |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
41 |
40
|
rexlimdvaa |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝑏 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
42 |
12 41
|
syl5 |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝑦 ∈ 𝐵 ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
43 |
42
|
expdimp |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ ( topGen ‘ 𝑏 ) ) → ( 𝑦 ∈ 𝐵 → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
44 |
43
|
exlimdv |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ ( topGen ‘ 𝑏 ) ) → ( ∃ 𝑦 𝑦 ∈ 𝐵 → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
45 |
11 44
|
syl5bi |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ ( topGen ‘ 𝑏 ) ) → ( 𝐵 ≠ ∅ → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
46 |
45
|
expimpd |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝐵 ≠ ∅ ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
47 |
10 46
|
syl5bi |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
48 |
47
|
impr |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
49 |
9 48
|
sseldd |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) |
50 |
49
|
expr |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) ) |
51 |
50
|
ralimdva |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ 𝐴 ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) ) |
52 |
51
|
imp |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ∀ 𝑥 ∈ 𝐴 ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) |
53 |
52
|
adantrr |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) |
54 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) = ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
55 |
54
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ↔ ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 ⟶ ω ) |
56 |
53 55
|
sylib |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 ⟶ ω ) |
57 |
|
neeq1 |
⊢ ( ( ◡ 𝑓 ‘ 𝑧 ) = if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ ↔ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ≠ ∅ ) ) |
58 |
|
neeq1 |
⊢ ( 1o = if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → ( 1o ≠ ∅ ↔ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ≠ ∅ ) ) |
59 |
|
1n0 |
⊢ 1o ≠ ∅ |
60 |
57 58 59
|
elimhyp |
⊢ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ≠ ∅ |
61 |
|
n0 |
⊢ ( if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) |
62 |
60 61
|
mpbi |
⊢ ∃ 𝑦 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) |
63 |
|
19.29r |
⊢ ( ( ∃ 𝑦 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ∃ 𝑦 ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
64 |
62 63
|
mpan |
⊢ ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃ 𝑦 ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
65 |
|
eleq1 |
⊢ ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ↔ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
66 |
48 65
|
syl5ibrcom |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
67 |
66
|
imp |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
68 |
|
fveq2 |
⊢ ( 𝑛 = 𝑧 → ( ◡ 𝑓 ‘ 𝑛 ) = ( ◡ 𝑓 ‘ 𝑧 ) ) |
69 |
68
|
eleq1d |
⊢ ( 𝑛 = 𝑧 → ( ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( ◡ 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) ) |
70 |
69
|
elrab |
⊢ ( 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ↔ ( 𝑧 ∈ ran 𝑓 ∧ ( ◡ 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) ) |
71 |
70
|
simprbi |
⊢ ( 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( ◡ 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
72 |
67 71
|
syl |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( ◡ 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
73 |
|
eldifsn |
⊢ ( ( ◡ 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( ( ◡ 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝐵 ∧ ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ ) ) |
74 |
72 73
|
sylib |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( ( ◡ 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝐵 ∧ ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ ) ) |
75 |
74
|
simprd |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ ) |
76 |
75
|
iftrued |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) = ( ◡ 𝑓 ‘ 𝑧 ) ) |
77 |
74
|
simpld |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( ◡ 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝐵 ) |
78 |
77
|
elpwid |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( ◡ 𝑓 ‘ 𝑧 ) ⊆ 𝐵 ) |
79 |
76 78
|
eqsstrd |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ⊆ 𝐵 ) |
80 |
79
|
sseld |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → 𝑦 ∈ 𝐵 ) ) |
81 |
80
|
exp31 |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → 𝑦 ∈ 𝐵 ) ) ) ) |
82 |
81
|
com23 |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → 𝑦 ∈ 𝐵 ) ) ) ) |
83 |
82
|
exp4a |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( 𝑥 ∈ 𝐴 → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → 𝑦 ∈ 𝐵 ) ) ) ) ) |
84 |
83
|
com25 |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → ( 𝑥 ∈ 𝐴 → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) ) ) ) ) |
85 |
84
|
imp31 |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) ) ) |
86 |
85
|
ralimdva |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ 𝐴 ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) ) ) |
87 |
86
|
imp |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) ) |
88 |
87
|
an32s |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) ) |
89 |
|
rmoim |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
90 |
88 89
|
syl |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
91 |
90
|
expimpd |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
92 |
91
|
exlimdv |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( ∃ 𝑦 ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
93 |
64 92
|
syl5 |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
94 |
93
|
impr |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
95 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑤 |
96 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
97 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
98 |
95 96 97
|
nfbr |
⊢ Ⅎ 𝑥 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 |
99 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
100 |
|
breq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ 𝑥 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ) ) |
101 |
|
df-br |
⊢ ( 𝑥 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ 〈 𝑥 , 𝑧 〉 ∈ ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
102 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) } |
103 |
102
|
eleq2i |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ↔ 〈 𝑥 , 𝑧 〉 ∈ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) } ) |
104 |
|
opabidw |
⊢ ( 〈 𝑥 , 𝑧 〉 ∈ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
105 |
101 103 104
|
3bitri |
⊢ ( 𝑥 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
106 |
100 105
|
bitrdi |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) ) |
107 |
98 99 106
|
cbvmow |
⊢ ( ∃* 𝑤 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
108 |
|
df-rmo |
⊢ ( ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
109 |
107 108
|
bitr4i |
⊢ ( ∃* 𝑤 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
110 |
94 109
|
sylibr |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ∃* 𝑤 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ) |
111 |
110
|
alrimiv |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ∀ 𝑧 ∃* 𝑤 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ) |
112 |
|
dff12 |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 –1-1→ ω ↔ ( ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 ⟶ ω ∧ ∀ 𝑧 ∃* 𝑤 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ) ) |
113 |
56 111 112
|
sylanbrc |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 –1-1→ ω ) |
114 |
|
f1domg |
⊢ ( ω ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 –1-1→ ω → 𝐴 ≼ ω ) ) |
115 |
2 113 114
|
mpsyl |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → 𝐴 ≼ ω ) |
116 |
115
|
ex |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) |
117 |
|
difeq1 |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) = ( 𝐽 ∖ { ∅ } ) ) |
118 |
117
|
eleq2d |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ↔ 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ) ) |
119 |
118
|
ralbidv |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ) ) |
120 |
119
|
anbi1d |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) ) |
121 |
120
|
imbi1d |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) |
122 |
116 121
|
syl5ibcom |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) |
123 |
122
|
ex |
⊢ ( 𝑏 ∈ TopBases → ( 𝑓 : 𝑏 –1-1→ ω → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) ) |
124 |
123
|
exlimdv |
⊢ ( 𝑏 ∈ TopBases → ( ∃ 𝑓 𝑓 : 𝑏 –1-1→ ω → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) ) |
125 |
3 124
|
syl5bi |
⊢ ( 𝑏 ∈ TopBases → ( 𝑏 ≼ ω → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) ) |
126 |
125
|
impd |
⊢ ( 𝑏 ∈ TopBases → ( ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) |
127 |
126
|
rexlimiv |
⊢ ( ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) |
128 |
1 127
|
sylbi |
⊢ ( 𝐽 ∈ 2ndω → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) |
129 |
128
|
3impib |
⊢ ( ( 𝐽 ∈ 2ndω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) |