Metamath Proof Explorer


Theorem 2ndcdisj

Description: Any disjoint family of open sets in a second-countable space is countable. (The sets are required to be nonempty because otherwise there could be many empty sets in the family.) (Contributed by Mario Carneiro, 21-Mar-2015) (Proof shortened by Mario Carneiro, 9-Apr-2015) (Revised by NM, 17-Jun-2017)

Ref Expression
Assertion 2ndcdisj ( ( 𝐽 ∈ 2ndω ∧ ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω )

Proof

Step Hyp Ref Expression
1 is2ndc ( 𝐽 ∈ 2ndω ↔ ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) )
2 omex ω ∈ V
3 2 brdom ( 𝑏 ≼ ω ↔ ∃ 𝑓 𝑓 : 𝑏1-1→ ω )
4 ssrab2 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ ran 𝑓
5 f1f ( 𝑓 : 𝑏1-1→ ω → 𝑓 : 𝑏 ⟶ ω )
6 5 frnd ( 𝑓 : 𝑏1-1→ ω → ran 𝑓 ⊆ ω )
7 6 adantl ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) → ran 𝑓 ⊆ ω )
8 4 7 sstrid ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ ω )
9 8 adantr ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ ω )
10 eldifsn ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ↔ ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝐵 ≠ ∅ ) )
11 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦𝐵 )
12 tg2 ( ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝑦𝐵 ) → ∃ 𝑧𝑏 ( 𝑦𝑧𝑧𝐵 ) )
13 omsson ω ⊆ On
14 8 13 sstrdi ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ On )
15 14 ad2antrr ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ On )
16 f1fn ( 𝑓 : 𝑏1-1→ ω → 𝑓 Fn 𝑏 )
17 16 ad3antlr ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → 𝑓 Fn 𝑏 )
18 simprl ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → 𝑧𝑏 )
19 fnfvelrn ( ( 𝑓 Fn 𝑏𝑧𝑏 ) → ( 𝑓𝑧 ) ∈ ran 𝑓 )
20 17 18 19 syl2anc ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → ( 𝑓𝑧 ) ∈ ran 𝑓 )
21 f1f1orn ( 𝑓 : 𝑏1-1→ ω → 𝑓 : 𝑏1-1-onto→ ran 𝑓 )
22 21 ad3antlr ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → 𝑓 : 𝑏1-1-onto→ ran 𝑓 )
23 f1ocnvfv1 ( ( 𝑓 : 𝑏1-1-onto→ ran 𝑓𝑧𝑏 ) → ( 𝑓 ‘ ( 𝑓𝑧 ) ) = 𝑧 )
24 22 18 23 syl2anc ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → ( 𝑓 ‘ ( 𝑓𝑧 ) ) = 𝑧 )
25 simprrr ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → 𝑧𝐵 )
26 velpw ( 𝑧 ∈ 𝒫 𝐵𝑧𝐵 )
27 25 26 sylibr ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → 𝑧 ∈ 𝒫 𝐵 )
28 simprrl ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → 𝑦𝑧 )
29 28 ne0d ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → 𝑧 ≠ ∅ )
30 eldifsn ( 𝑧 ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( 𝑧 ∈ 𝒫 𝐵𝑧 ≠ ∅ ) )
31 27 29 30 sylanbrc ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → 𝑧 ∈ ( 𝒫 𝐵 ∖ { ∅ } ) )
32 24 31 eqeltrd ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → ( 𝑓 ‘ ( 𝑓𝑧 ) ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) )
33 fveq2 ( 𝑛 = ( 𝑓𝑧 ) → ( 𝑓𝑛 ) = ( 𝑓 ‘ ( 𝑓𝑧 ) ) )
34 33 eleq1d ( 𝑛 = ( 𝑓𝑧 ) → ( ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( 𝑓 ‘ ( 𝑓𝑧 ) ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) )
35 34 rspcev ( ( ( 𝑓𝑧 ) ∈ ran 𝑓 ∧ ( 𝑓 ‘ ( 𝑓𝑧 ) ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) → ∃ 𝑛 ∈ ran 𝑓 ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) )
36 20 32 35 syl2anc ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → ∃ 𝑛 ∈ ran 𝑓 ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) )
37 rabn0 ( { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ≠ ∅ ↔ ∃ 𝑛 ∈ ran 𝑓 ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) )
38 36 37 sylibr ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ≠ ∅ )
39 onint ( ( { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ On ∧ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ≠ ∅ ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } )
40 15 38 39 syl2anc ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ ( 𝑧𝑏 ∧ ( 𝑦𝑧𝑧𝐵 ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } )
41 40 rexlimdvaa ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) → ( ∃ 𝑧𝑏 ( 𝑦𝑧𝑧𝐵 ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
42 12 41 syl5 ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) → ( ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝑦𝐵 ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
43 42 expdimp ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ 𝐵 ∈ ( topGen ‘ 𝑏 ) ) → ( 𝑦𝐵 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
44 43 exlimdv ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ 𝐵 ∈ ( topGen ‘ 𝑏 ) ) → ( ∃ 𝑦 𝑦𝐵 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
45 11 44 syl5bi ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) ∧ 𝐵 ∈ ( topGen ‘ 𝑏 ) ) → ( 𝐵 ≠ ∅ → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
46 45 expimpd ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) → ( ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝐵 ≠ ∅ ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
47 10 46 syl5bi ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
48 47 impr ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } )
49 9 48 sseldd ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω )
50 49 expr ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑥𝐴 ) → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) )
51 50 ralimdva ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) → ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ∀ 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) )
52 51 imp ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ∀ 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω )
53 52 adantrr ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) ) → ∀ 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω )
54 eqid ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) = ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } )
55 54 fmpt ( ∀ 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ↔ ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 ⟶ ω )
56 53 55 sylib ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) ) → ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 ⟶ ω )
57 neeq1 ( ( 𝑓𝑧 ) = if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) → ( ( 𝑓𝑧 ) ≠ ∅ ↔ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ≠ ∅ ) )
58 neeq1 ( 1o = if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) → ( 1o ≠ ∅ ↔ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ≠ ∅ ) )
59 1n0 1o ≠ ∅
60 57 58 59 elimhyp if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ≠ ∅
61 n0 ( if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) )
62 60 61 mpbi 𝑦 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o )
63 19.29r ( ( ∃ 𝑦 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → ∃ 𝑦 ( 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ∧ ∃* 𝑥𝐴 𝑦𝐵 ) )
64 62 63 mpan ( ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 → ∃ 𝑦 ( 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ∧ ∃* 𝑥𝐴 𝑦𝐵 ) )
65 eleq1 ( 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ↔ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
66 48 65 syl5ibrcom ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → ( 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
67 66 imp ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } )
68 fveq2 ( 𝑛 = 𝑧 → ( 𝑓𝑛 ) = ( 𝑓𝑧 ) )
69 68 eleq1d ( 𝑛 = 𝑧 → ( ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( 𝑓𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) )
70 69 elrab ( 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ↔ ( 𝑧 ∈ ran 𝑓 ∧ ( 𝑓𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) )
71 70 simprbi ( 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( 𝑓𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) )
72 67 71 syl ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( 𝑓𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) )
73 eldifsn ( ( 𝑓𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( ( 𝑓𝑧 ) ∈ 𝒫 𝐵 ∧ ( 𝑓𝑧 ) ≠ ∅ ) )
74 72 73 sylib ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( ( 𝑓𝑧 ) ∈ 𝒫 𝐵 ∧ ( 𝑓𝑧 ) ≠ ∅ ) )
75 74 simprd ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( 𝑓𝑧 ) ≠ ∅ )
76 75 iftrued ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) = ( 𝑓𝑧 ) )
77 74 simpld ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( 𝑓𝑧 ) ∈ 𝒫 𝐵 )
78 77 elpwid ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( 𝑓𝑧 ) ⊆ 𝐵 )
79 76 78 eqsstrd ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ⊆ 𝐵 )
80 79 sseld ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) → 𝑦𝐵 ) )
81 80 exp31 ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) → ( ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) → 𝑦𝐵 ) ) ) )
82 81 com23 ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) → ( 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( ( 𝑥𝐴𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) → 𝑦𝐵 ) ) ) )
83 82 exp4a ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) → ( 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( 𝑥𝐴 → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ( 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) → 𝑦𝐵 ) ) ) ) )
84 83 com25 ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) → ( 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) → ( 𝑥𝐴 → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ( 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦𝐵 ) ) ) ) )
85 84 imp31 ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ) ∧ 𝑥𝐴 ) → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ( 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦𝐵 ) ) )
86 85 ralimdva ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ) → ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ∀ 𝑥𝐴 ( 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦𝐵 ) ) )
87 86 imp ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ) ∧ ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ∀ 𝑥𝐴 ( 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦𝐵 ) )
88 87 an32s ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ) → ∀ 𝑥𝐴 ( 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦𝐵 ) )
89 rmoim ( ∀ 𝑥𝐴 ( 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦𝐵 ) → ( ∃* 𝑥𝐴 𝑦𝐵 → ∃* 𝑥𝐴 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
90 88 89 syl ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ) → ( ∃* 𝑥𝐴 𝑦𝐵 → ∃* 𝑥𝐴 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
91 90 expimpd ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( ( 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ∧ ∃* 𝑥𝐴 𝑦𝐵 ) → ∃* 𝑥𝐴 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
92 91 exlimdv ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( ∃ 𝑦 ( 𝑦 ∈ if ( ( 𝑓𝑧 ) ≠ ∅ , ( 𝑓𝑧 ) , 1o ) ∧ ∃* 𝑥𝐴 𝑦𝐵 ) → ∃* 𝑥𝐴 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
93 64 92 syl5 ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 → ∃* 𝑥𝐴 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
94 93 impr ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) ) → ∃* 𝑥𝐴 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } )
95 nfcv 𝑥 𝑤
96 nfmpt1 𝑥 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } )
97 nfcv 𝑥 𝑧
98 95 96 97 nfbr 𝑥 𝑤 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧
99 nfv 𝑤 ( 𝑥𝐴𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } )
100 breq1 ( 𝑤 = 𝑥 → ( 𝑤 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧𝑥 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ) )
101 df-br ( 𝑥 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ⟨ 𝑥 , 𝑧 ⟩ ∈ ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
102 df-mpt ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) = { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑥𝐴𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) }
103 102 eleq2i ( ⟨ 𝑥 , 𝑧 ⟩ ∈ ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ↔ ⟨ 𝑥 , 𝑧 ⟩ ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑥𝐴𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) } )
104 opabidw ( ⟨ 𝑥 , 𝑧 ⟩ ∈ { ⟨ 𝑥 , 𝑧 ⟩ ∣ ( 𝑥𝐴𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) } ↔ ( 𝑥𝐴𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
105 101 103 104 3bitri ( 𝑥 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ( 𝑥𝐴𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
106 100 105 bitrdi ( 𝑤 = 𝑥 → ( 𝑤 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ( 𝑥𝐴𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) )
107 98 99 106 cbvmow ( ∃* 𝑤 𝑤 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ∃* 𝑥 ( 𝑥𝐴𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
108 df-rmo ( ∃* 𝑥𝐴 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ↔ ∃* 𝑥 ( 𝑥𝐴𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) )
109 107 108 bitr4i ( ∃* 𝑤 𝑤 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ∃* 𝑥𝐴 𝑧 = { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } )
110 94 109 sylibr ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) ) → ∃* 𝑤 𝑤 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 )
111 110 alrimiv ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) ) → ∀ 𝑧 ∃* 𝑤 𝑤 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 )
112 dff12 ( ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴1-1→ ω ↔ ( ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 ⟶ ω ∧ ∀ 𝑧 ∃* 𝑤 𝑤 ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ) )
113 56 111 112 sylanbrc ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) ) → ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴1-1→ ω )
114 f1domg ( ω ∈ V → ( ( 𝑥𝐴 { 𝑛 ∈ ran 𝑓 ∣ ( 𝑓𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴1-1→ ω → 𝐴 ≼ ω ) )
115 2 113 114 mpsyl ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) ∧ ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) ) → 𝐴 ≼ ω )
116 115 ex ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) → ( ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω ) )
117 difeq1 ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) = ( 𝐽 ∖ { ∅ } ) )
118 117 eleq2d ( ( topGen ‘ 𝑏 ) = 𝐽 → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ↔ 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ) )
119 118 ralbidv ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ↔ ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ) )
120 119 anbi1d ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) ↔ ( ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) ) )
121 120 imbi1d ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ( ∀ 𝑥𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω ) ↔ ( ( ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω ) ) )
122 116 121 syl5ibcom ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏1-1→ ω ) → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω ) ) )
123 122 ex ( 𝑏 ∈ TopBases → ( 𝑓 : 𝑏1-1→ ω → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω ) ) ) )
124 123 exlimdv ( 𝑏 ∈ TopBases → ( ∃ 𝑓 𝑓 : 𝑏1-1→ ω → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω ) ) ) )
125 3 124 syl5bi ( 𝑏 ∈ TopBases → ( 𝑏 ≼ ω → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω ) ) ) )
126 125 impd ( 𝑏 ∈ TopBases → ( ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) → ( ( ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω ) ) )
127 126 rexlimiv ( ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) → ( ( ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω ) )
128 1 127 sylbi ( 𝐽 ∈ 2ndω → ( ( ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω ) )
129 128 3impib ( ( 𝐽 ∈ 2ndω ∧ ∀ 𝑥𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥𝐴 𝑦𝐵 ) → 𝐴 ≼ ω )