| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2ndcomap.2 |
⊢ 𝑌 = ∪ 𝐾 |
| 2 |
|
2ndcomap.3 |
⊢ ( 𝜑 → 𝐽 ∈ 2ndω ) |
| 3 |
|
2ndcomap.5 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 4 |
|
2ndcomap.6 |
⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) |
| 5 |
|
2ndcomap.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) |
| 6 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
| 7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝐾 ∈ Top ) |
| 9 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ 𝑥 ∈ 𝑏 ) → 𝜑 ) |
| 10 |
|
bastg |
⊢ ( 𝑏 ∈ TopBases → 𝑏 ⊆ ( topGen ‘ 𝑏 ) ) |
| 11 |
10
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ⊆ ( topGen ‘ 𝑏 ) ) |
| 12 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ 𝑏 ) = 𝐽 ) |
| 13 |
11 12
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ⊆ 𝐽 ) |
| 14 |
13
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ 𝐽 ) |
| 15 |
9 14 5
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) |
| 16 |
15
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 ⟶ 𝐾 ) |
| 17 |
16
|
frnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ⊆ 𝐾 ) |
| 18 |
|
elunii |
⊢ ( ( 𝑧 ∈ 𝑘 ∧ 𝑘 ∈ 𝐾 ) → 𝑧 ∈ ∪ 𝐾 ) |
| 19 |
18 1
|
eleqtrrdi |
⊢ ( ( 𝑧 ∈ 𝑘 ∧ 𝑘 ∈ 𝐾 ) → 𝑧 ∈ 𝑌 ) |
| 20 |
19
|
ancoms |
⊢ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) → 𝑧 ∈ 𝑌 ) |
| 21 |
20
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝑧 ∈ 𝑌 ) |
| 22 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ran 𝐹 = 𝑌 ) |
| 23 |
21 22
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝑧 ∈ ran 𝐹 ) |
| 24 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 25 |
24 1
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 27 |
26
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
| 28 |
|
ffn |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 → 𝐹 Fn ∪ 𝐽 ) |
| 29 |
|
fvelrnb |
⊢ ( 𝐹 Fn ∪ 𝐽 → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑡 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) |
| 30 |
27 28 29
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑡 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) |
| 31 |
23 30
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ∃ 𝑡 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑡 ) = 𝑧 ) |
| 32 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 33 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑘 ∈ 𝐾 ) |
| 34 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑘 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑘 ) ∈ 𝐽 ) |
| 35 |
32 33 34
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( ◡ 𝐹 “ 𝑘 ) ∈ 𝐽 ) |
| 36 |
12
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( topGen ‘ 𝑏 ) = 𝐽 ) |
| 37 |
35 36
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( ◡ 𝐹 “ 𝑘 ) ∈ ( topGen ‘ 𝑏 ) ) |
| 38 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑡 ∈ ∪ 𝐽 ) |
| 39 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( 𝐹 ‘ 𝑡 ) = 𝑧 ) |
| 40 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑧 ∈ 𝑘 ) |
| 41 |
39 40
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( 𝐹 ‘ 𝑡 ) ∈ 𝑘 ) |
| 42 |
27
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝐹 Fn ∪ 𝐽 ) |
| 43 |
42
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝐹 Fn ∪ 𝐽 ) |
| 44 |
|
elpreima |
⊢ ( 𝐹 Fn ∪ 𝐽 → ( 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ↔ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) ∈ 𝑘 ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ↔ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) ∈ 𝑘 ) ) ) |
| 46 |
38 41 45
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ) |
| 47 |
|
tg2 |
⊢ ( ( ( ◡ 𝐹 “ 𝑘 ) ∈ ( topGen ‘ 𝑏 ) ∧ 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ) → ∃ 𝑚 ∈ 𝑏 ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) |
| 48 |
37 46 47
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ∃ 𝑚 ∈ 𝑏 ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) |
| 49 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑚 ∈ 𝑏 ) |
| 50 |
|
eqid |
⊢ ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑚 ) |
| 51 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑚 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑚 ) ) |
| 52 |
51
|
rspceeqv |
⊢ ( ( 𝑚 ∈ 𝑏 ∧ ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑚 ) ) → ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) |
| 53 |
49 50 52
|
sylancl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) |
| 54 |
43
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝐹 Fn ∪ 𝐽 ) |
| 55 |
|
fnfun |
⊢ ( 𝐹 Fn ∪ 𝐽 → Fun 𝐹 ) |
| 56 |
54 55
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → Fun 𝐹 ) |
| 57 |
|
simprrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) |
| 58 |
|
funimass2 |
⊢ ( ( Fun 𝐹 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) → ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) |
| 59 |
56 57 58
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) |
| 60 |
|
vex |
⊢ 𝑘 ∈ V |
| 61 |
|
ssexg |
⊢ ( ( ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ∧ 𝑘 ∈ V ) → ( 𝐹 “ 𝑚 ) ∈ V ) |
| 62 |
59 60 61
|
sylancl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 “ 𝑚 ) ∈ V ) |
| 63 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) |
| 64 |
63
|
elrnmpt |
⊢ ( ( 𝐹 “ 𝑚 ) ∈ V → ( ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 65 |
62 64
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 66 |
53 65
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 67 |
39
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 ‘ 𝑡 ) = 𝑧 ) |
| 68 |
|
simprrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑡 ∈ 𝑚 ) |
| 69 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑘 ) ⊆ dom 𝐹 |
| 70 |
57 69
|
sstrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑚 ⊆ dom 𝐹 ) |
| 71 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ 𝑚 ⊆ dom 𝐹 ) → ( 𝑡 ∈ 𝑚 → ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑚 ) ) ) |
| 72 |
56 70 71
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝑡 ∈ 𝑚 → ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑚 ) ) ) |
| 73 |
68 72
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑚 ) ) |
| 74 |
67 73
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑧 ∈ ( 𝐹 “ 𝑚 ) ) |
| 75 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝐹 “ 𝑚 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( 𝐹 “ 𝑚 ) ) ) |
| 76 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝐹 “ 𝑚 ) → ( 𝑤 ⊆ 𝑘 ↔ ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) ) |
| 77 |
75 76
|
anbi12d |
⊢ ( 𝑤 = ( 𝐹 “ 𝑚 ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ↔ ( 𝑧 ∈ ( 𝐹 “ 𝑚 ) ∧ ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) ) ) |
| 78 |
77
|
rspcev |
⊢ ( ( ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∧ ( 𝑧 ∈ ( 𝐹 “ 𝑚 ) ∧ ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 79 |
66 74 59 78
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 80 |
48 79
|
rexlimddv |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 81 |
80
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 82 |
31 81
|
rexlimddv |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 83 |
82
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ∀ 𝑘 ∈ 𝐾 ∀ 𝑧 ∈ 𝑘 ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
| 84 |
|
basgen2 |
⊢ ( ( 𝐾 ∈ Top ∧ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ⊆ 𝐾 ∧ ∀ 𝑘 ∈ 𝐾 ∀ 𝑧 ∈ 𝑘 ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) = 𝐾 ) |
| 85 |
8 17 83 84
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) = 𝐾 ) |
| 86 |
85 8
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ Top ) |
| 87 |
|
tgclb |
⊢ ( ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∈ TopBases ↔ ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ Top ) |
| 88 |
86 87
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∈ TopBases ) |
| 89 |
|
omelon |
⊢ ω ∈ On |
| 90 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ≼ ω ) |
| 91 |
|
ondomen |
⊢ ( ( ω ∈ On ∧ 𝑏 ≼ ω ) → 𝑏 ∈ dom card ) |
| 92 |
89 90 91
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ∈ dom card ) |
| 93 |
16
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) Fn 𝑏 ) |
| 94 |
|
dffn4 |
⊢ ( ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) Fn 𝑏 ↔ ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 –onto→ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 95 |
93 94
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 –onto→ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 96 |
|
fodomnum |
⊢ ( 𝑏 ∈ dom card → ( ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 –onto→ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ 𝑏 ) ) |
| 97 |
92 95 96
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ 𝑏 ) |
| 98 |
|
domtr |
⊢ ( ( ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ 𝑏 ∧ 𝑏 ≼ ω ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ ω ) |
| 99 |
97 90 98
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ ω ) |
| 100 |
|
2ndci |
⊢ ( ( ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∈ TopBases ∧ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ 2ndω ) |
| 101 |
88 99 100
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ 2ndω ) |
| 102 |
85 101
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝐾 ∈ 2ndω ) |
| 103 |
|
is2ndc |
⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) |
| 104 |
2 103
|
sylib |
⊢ ( 𝜑 → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) |
| 105 |
102 104
|
r19.29a |
⊢ ( 𝜑 → 𝐾 ∈ 2ndω ) |