Step |
Hyp |
Ref |
Expression |
1 |
|
2ndcomap.2 |
⊢ 𝑌 = ∪ 𝐾 |
2 |
|
2ndcomap.3 |
⊢ ( 𝜑 → 𝐽 ∈ 2ndω ) |
3 |
|
2ndcomap.5 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
4 |
|
2ndcomap.6 |
⊢ ( 𝜑 → ran 𝐹 = 𝑌 ) |
5 |
|
2ndcomap.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐽 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) |
6 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝐾 ∈ Top ) |
9 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ 𝑥 ∈ 𝑏 ) → 𝜑 ) |
10 |
|
bastg |
⊢ ( 𝑏 ∈ TopBases → 𝑏 ⊆ ( topGen ‘ 𝑏 ) ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ⊆ ( topGen ‘ 𝑏 ) ) |
12 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ 𝑏 ) = 𝐽 ) |
13 |
11 12
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ⊆ 𝐽 ) |
14 |
13
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ 𝐽 ) |
15 |
9 14 5
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ 𝑥 ∈ 𝑏 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐾 ) |
16 |
15
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 ⟶ 𝐾 ) |
17 |
16
|
frnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ⊆ 𝐾 ) |
18 |
|
elunii |
⊢ ( ( 𝑧 ∈ 𝑘 ∧ 𝑘 ∈ 𝐾 ) → 𝑧 ∈ ∪ 𝐾 ) |
19 |
18 1
|
eleqtrrdi |
⊢ ( ( 𝑧 ∈ 𝑘 ∧ 𝑘 ∈ 𝐾 ) → 𝑧 ∈ 𝑌 ) |
20 |
19
|
ancoms |
⊢ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) → 𝑧 ∈ 𝑌 ) |
21 |
20
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝑧 ∈ 𝑌 ) |
22 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ran 𝐹 = 𝑌 ) |
23 |
21 22
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝑧 ∈ ran 𝐹 ) |
24 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
25 |
24 1
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
27 |
26
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝐹 : ∪ 𝐽 ⟶ 𝑌 ) |
28 |
|
ffn |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ 𝑌 → 𝐹 Fn ∪ 𝐽 ) |
29 |
|
fvelrnb |
⊢ ( 𝐹 Fn ∪ 𝐽 → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑡 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) |
30 |
27 28 29
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ( 𝑧 ∈ ran 𝐹 ↔ ∃ 𝑡 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) |
31 |
23 30
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ∃ 𝑡 ∈ ∪ 𝐽 ( 𝐹 ‘ 𝑡 ) = 𝑧 ) |
32 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
33 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑘 ∈ 𝐾 ) |
34 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑘 ∈ 𝐾 ) → ( ◡ 𝐹 “ 𝑘 ) ∈ 𝐽 ) |
35 |
32 33 34
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( ◡ 𝐹 “ 𝑘 ) ∈ 𝐽 ) |
36 |
12
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( topGen ‘ 𝑏 ) = 𝐽 ) |
37 |
35 36
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( ◡ 𝐹 “ 𝑘 ) ∈ ( topGen ‘ 𝑏 ) ) |
38 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑡 ∈ ∪ 𝐽 ) |
39 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( 𝐹 ‘ 𝑡 ) = 𝑧 ) |
40 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑧 ∈ 𝑘 ) |
41 |
39 40
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( 𝐹 ‘ 𝑡 ) ∈ 𝑘 ) |
42 |
27
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → 𝐹 Fn ∪ 𝐽 ) |
43 |
42
|
adantrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝐹 Fn ∪ 𝐽 ) |
44 |
|
elpreima |
⊢ ( 𝐹 Fn ∪ 𝐽 → ( 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ↔ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) ∈ 𝑘 ) ) ) |
45 |
43 44
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ( 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ↔ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) ∈ 𝑘 ) ) ) |
46 |
38 41 45
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ) |
47 |
|
tg2 |
⊢ ( ( ( ◡ 𝐹 “ 𝑘 ) ∈ ( topGen ‘ 𝑏 ) ∧ 𝑡 ∈ ( ◡ 𝐹 “ 𝑘 ) ) → ∃ 𝑚 ∈ 𝑏 ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) |
48 |
37 46 47
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ∃ 𝑚 ∈ 𝑏 ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) |
49 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑚 ∈ 𝑏 ) |
50 |
|
eqid |
⊢ ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑚 ) |
51 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑚 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑚 ) ) |
52 |
51
|
rspceeqv |
⊢ ( ( 𝑚 ∈ 𝑏 ∧ ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑚 ) ) → ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) |
53 |
49 50 52
|
sylancl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) |
54 |
43
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝐹 Fn ∪ 𝐽 ) |
55 |
|
fnfun |
⊢ ( 𝐹 Fn ∪ 𝐽 → Fun 𝐹 ) |
56 |
54 55
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → Fun 𝐹 ) |
57 |
|
simprrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) |
58 |
|
funimass2 |
⊢ ( ( Fun 𝐹 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) → ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) |
59 |
56 57 58
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) |
60 |
|
vex |
⊢ 𝑘 ∈ V |
61 |
|
ssexg |
⊢ ( ( ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ∧ 𝑘 ∈ V ) → ( 𝐹 “ 𝑚 ) ∈ V ) |
62 |
59 60 61
|
sylancl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 “ 𝑚 ) ∈ V ) |
63 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) |
64 |
63
|
elrnmpt |
⊢ ( ( 𝐹 “ 𝑚 ) ∈ V → ( ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) ) |
65 |
62 64
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ( 𝐹 “ 𝑚 ) = ( 𝐹 “ 𝑥 ) ) ) |
66 |
53 65
|
mpbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) |
67 |
39
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 ‘ 𝑡 ) = 𝑧 ) |
68 |
|
simprrl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑡 ∈ 𝑚 ) |
69 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑘 ) ⊆ dom 𝐹 |
70 |
57 69
|
sstrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑚 ⊆ dom 𝐹 ) |
71 |
|
funfvima2 |
⊢ ( ( Fun 𝐹 ∧ 𝑚 ⊆ dom 𝐹 ) → ( 𝑡 ∈ 𝑚 → ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑚 ) ) ) |
72 |
56 70 71
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝑡 ∈ 𝑚 → ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑚 ) ) ) |
73 |
68 72
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ( 𝐹 ‘ 𝑡 ) ∈ ( 𝐹 “ 𝑚 ) ) |
74 |
67 73
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → 𝑧 ∈ ( 𝐹 “ 𝑚 ) ) |
75 |
|
eleq2 |
⊢ ( 𝑤 = ( 𝐹 “ 𝑚 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ ( 𝐹 “ 𝑚 ) ) ) |
76 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝐹 “ 𝑚 ) → ( 𝑤 ⊆ 𝑘 ↔ ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) ) |
77 |
75 76
|
anbi12d |
⊢ ( 𝑤 = ( 𝐹 “ 𝑚 ) → ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ↔ ( 𝑧 ∈ ( 𝐹 “ 𝑚 ) ∧ ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) ) ) |
78 |
77
|
rspcev |
⊢ ( ( ( 𝐹 “ 𝑚 ) ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∧ ( 𝑧 ∈ ( 𝐹 “ 𝑚 ) ∧ ( 𝐹 “ 𝑚 ) ⊆ 𝑘 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
79 |
66 74 59 78
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) ∧ ( 𝑚 ∈ 𝑏 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ ( ◡ 𝐹 “ 𝑘 ) ) ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
80 |
48 79
|
rexlimddv |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
81 |
80
|
anassrs |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) ∧ ( 𝑡 ∈ ∪ 𝐽 ∧ ( 𝐹 ‘ 𝑡 ) = 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
82 |
31 81
|
rexlimddv |
⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) ∧ ( 𝑘 ∈ 𝐾 ∧ 𝑧 ∈ 𝑘 ) ) → ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
83 |
82
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ∀ 𝑘 ∈ 𝐾 ∀ 𝑧 ∈ 𝑘 ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) |
84 |
|
basgen2 |
⊢ ( ( 𝐾 ∈ Top ∧ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ⊆ 𝐾 ∧ ∀ 𝑘 ∈ 𝐾 ∀ 𝑧 ∈ 𝑘 ∃ 𝑤 ∈ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ( 𝑧 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑘 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) = 𝐾 ) |
85 |
8 17 83 84
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) = 𝐾 ) |
86 |
85 8
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ Top ) |
87 |
|
tgclb |
⊢ ( ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∈ TopBases ↔ ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ Top ) |
88 |
86 87
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∈ TopBases ) |
89 |
|
omelon |
⊢ ω ∈ On |
90 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ≼ ω ) |
91 |
|
ondomen |
⊢ ( ( ω ∈ On ∧ 𝑏 ≼ ω ) → 𝑏 ∈ dom card ) |
92 |
89 90 91
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝑏 ∈ dom card ) |
93 |
16
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) Fn 𝑏 ) |
94 |
|
dffn4 |
⊢ ( ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) Fn 𝑏 ↔ ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 –onto→ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) |
95 |
93 94
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 –onto→ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) |
96 |
|
fodomnum |
⊢ ( 𝑏 ∈ dom card → ( ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) : 𝑏 –onto→ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ 𝑏 ) ) |
97 |
92 95 96
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ 𝑏 ) |
98 |
|
domtr |
⊢ ( ( ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ 𝑏 ∧ 𝑏 ≼ ω ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ ω ) |
99 |
97 90 98
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ ω ) |
100 |
|
2ndci |
⊢ ( ( ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ∈ TopBases ∧ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ 2ndω ) |
101 |
88 99 100
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑏 ↦ ( 𝐹 “ 𝑥 ) ) ) ∈ 2ndω ) |
102 |
85 101
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ TopBases ) ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → 𝐾 ∈ 2ndω ) |
103 |
|
is2ndc |
⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) |
104 |
2 103
|
sylib |
⊢ ( 𝜑 → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) |
105 |
102 104
|
r19.29a |
⊢ ( 𝜑 → 𝐾 ∈ 2ndω ) |