Step |
Hyp |
Ref |
Expression |
1 |
|
is2ndc |
⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) |
2 |
|
tgdom |
⊢ ( 𝑥 ∈ TopBases → ( topGen ‘ 𝑥 ) ≼ 𝒫 𝑥 ) |
3 |
|
simpr |
⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → 𝑥 ≼ ω ) |
4 |
|
nnenom |
⊢ ℕ ≈ ω |
5 |
4
|
ensymi |
⊢ ω ≈ ℕ |
6 |
|
domentr |
⊢ ( ( 𝑥 ≼ ω ∧ ω ≈ ℕ ) → 𝑥 ≼ ℕ ) |
7 |
3 5 6
|
sylancl |
⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → 𝑥 ≼ ℕ ) |
8 |
|
pwdom |
⊢ ( 𝑥 ≼ ℕ → 𝒫 𝑥 ≼ 𝒫 ℕ ) |
9 |
7 8
|
syl |
⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → 𝒫 𝑥 ≼ 𝒫 ℕ ) |
10 |
|
rpnnen |
⊢ ℝ ≈ 𝒫 ℕ |
11 |
10
|
ensymi |
⊢ 𝒫 ℕ ≈ ℝ |
12 |
|
domentr |
⊢ ( ( 𝒫 𝑥 ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≈ ℝ ) → 𝒫 𝑥 ≼ ℝ ) |
13 |
9 11 12
|
sylancl |
⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → 𝒫 𝑥 ≼ ℝ ) |
14 |
|
domtr |
⊢ ( ( ( topGen ‘ 𝑥 ) ≼ 𝒫 𝑥 ∧ 𝒫 𝑥 ≼ ℝ ) → ( topGen ‘ 𝑥 ) ≼ ℝ ) |
15 |
2 13 14
|
syl2an2r |
⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → ( topGen ‘ 𝑥 ) ≼ ℝ ) |
16 |
|
breq1 |
⊢ ( ( topGen ‘ 𝑥 ) = 𝐽 → ( ( topGen ‘ 𝑥 ) ≼ ℝ ↔ 𝐽 ≼ ℝ ) ) |
17 |
15 16
|
syl5ibcom |
⊢ ( ( 𝑥 ∈ TopBases ∧ 𝑥 ≼ ω ) → ( ( topGen ‘ 𝑥 ) = 𝐽 → 𝐽 ≼ ℝ ) ) |
18 |
17
|
expimpd |
⊢ ( 𝑥 ∈ TopBases → ( ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → 𝐽 ≼ ℝ ) ) |
19 |
18
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → 𝐽 ≼ ℝ ) |
20 |
1 19
|
sylbi |
⊢ ( 𝐽 ∈ 2ndω → 𝐽 ≼ ℝ ) |