| Step | Hyp | Ref | Expression | 
						
							| 1 |  | is2ndc | ⊢ ( 𝐽  ∈  2ndω  ↔  ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 ) ) | 
						
							| 2 |  | tgdom | ⊢ ( 𝑥  ∈  TopBases  →  ( topGen ‘ 𝑥 )  ≼  𝒫  𝑥 ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝑥  ∈  TopBases  ∧  𝑥  ≼  ω )  →  𝑥  ≼  ω ) | 
						
							| 4 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 5 | 4 | ensymi | ⊢ ω  ≈  ℕ | 
						
							| 6 |  | domentr | ⊢ ( ( 𝑥  ≼  ω  ∧  ω  ≈  ℕ )  →  𝑥  ≼  ℕ ) | 
						
							| 7 | 3 5 6 | sylancl | ⊢ ( ( 𝑥  ∈  TopBases  ∧  𝑥  ≼  ω )  →  𝑥  ≼  ℕ ) | 
						
							| 8 |  | pwdom | ⊢ ( 𝑥  ≼  ℕ  →  𝒫  𝑥  ≼  𝒫  ℕ ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑥  ∈  TopBases  ∧  𝑥  ≼  ω )  →  𝒫  𝑥  ≼  𝒫  ℕ ) | 
						
							| 10 |  | rpnnen | ⊢ ℝ  ≈  𝒫  ℕ | 
						
							| 11 | 10 | ensymi | ⊢ 𝒫  ℕ  ≈  ℝ | 
						
							| 12 |  | domentr | ⊢ ( ( 𝒫  𝑥  ≼  𝒫  ℕ  ∧  𝒫  ℕ  ≈  ℝ )  →  𝒫  𝑥  ≼  ℝ ) | 
						
							| 13 | 9 11 12 | sylancl | ⊢ ( ( 𝑥  ∈  TopBases  ∧  𝑥  ≼  ω )  →  𝒫  𝑥  ≼  ℝ ) | 
						
							| 14 |  | domtr | ⊢ ( ( ( topGen ‘ 𝑥 )  ≼  𝒫  𝑥  ∧  𝒫  𝑥  ≼  ℝ )  →  ( topGen ‘ 𝑥 )  ≼  ℝ ) | 
						
							| 15 | 2 13 14 | syl2an2r | ⊢ ( ( 𝑥  ∈  TopBases  ∧  𝑥  ≼  ω )  →  ( topGen ‘ 𝑥 )  ≼  ℝ ) | 
						
							| 16 |  | breq1 | ⊢ ( ( topGen ‘ 𝑥 )  =  𝐽  →  ( ( topGen ‘ 𝑥 )  ≼  ℝ  ↔  𝐽  ≼  ℝ ) ) | 
						
							| 17 | 15 16 | syl5ibcom | ⊢ ( ( 𝑥  ∈  TopBases  ∧  𝑥  ≼  ω )  →  ( ( topGen ‘ 𝑥 )  =  𝐽  →  𝐽  ≼  ℝ ) ) | 
						
							| 18 | 17 | expimpd | ⊢ ( 𝑥  ∈  TopBases  →  ( ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 )  →  𝐽  ≼  ℝ ) ) | 
						
							| 19 | 18 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 )  →  𝐽  ≼  ℝ ) | 
						
							| 20 | 1 19 | sylbi | ⊢ ( 𝐽  ∈  2ndω  →  𝐽  ≼  ℝ ) |