| Step |
Hyp |
Ref |
Expression |
| 1 |
|
is2ndc |
⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) |
| 2 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → 𝑥 ∈ TopBases ) |
| 3 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → 𝐴 ∈ 𝑉 ) |
| 4 |
|
tgrest |
⊢ ( ( 𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉 ) → ( topGen ‘ ( 𝑥 ↾t 𝐴 ) ) = ( ( topGen ‘ 𝑥 ) ↾t 𝐴 ) ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( topGen ‘ ( 𝑥 ↾t 𝐴 ) ) = ( ( topGen ‘ 𝑥 ) ↾t 𝐴 ) ) |
| 6 |
|
restbas |
⊢ ( 𝑥 ∈ TopBases → ( 𝑥 ↾t 𝐴 ) ∈ TopBases ) |
| 7 |
6
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( 𝑥 ↾t 𝐴 ) ∈ TopBases ) |
| 8 |
|
restval |
⊢ ( ( 𝑥 ∈ TopBases ∧ 𝐴 ∈ 𝑉 ) → ( 𝑥 ↾t 𝐴 ) = ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ 𝐴 ) ) ) |
| 9 |
2 3 8
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( 𝑥 ↾t 𝐴 ) = ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ 𝐴 ) ) ) |
| 10 |
|
1stcrestlem |
⊢ ( 𝑥 ≼ ω → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ 𝐴 ) ) ≼ ω ) |
| 11 |
10
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ran ( 𝑦 ∈ 𝑥 ↦ ( 𝑦 ∩ 𝐴 ) ) ≼ ω ) |
| 12 |
9 11
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( 𝑥 ↾t 𝐴 ) ≼ ω ) |
| 13 |
|
2ndci |
⊢ ( ( ( 𝑥 ↾t 𝐴 ) ∈ TopBases ∧ ( 𝑥 ↾t 𝐴 ) ≼ ω ) → ( topGen ‘ ( 𝑥 ↾t 𝐴 ) ) ∈ 2ndω ) |
| 14 |
7 12 13
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( topGen ‘ ( 𝑥 ↾t 𝐴 ) ) ∈ 2ndω ) |
| 15 |
5 14
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( ( topGen ‘ 𝑥 ) ↾t 𝐴 ) ∈ 2ndω ) |
| 16 |
|
oveq1 |
⊢ ( ( topGen ‘ 𝑥 ) = 𝐽 → ( ( topGen ‘ 𝑥 ) ↾t 𝐴 ) = ( 𝐽 ↾t 𝐴 ) ) |
| 17 |
16
|
eleq1d |
⊢ ( ( topGen ‘ 𝑥 ) = 𝐽 → ( ( ( topGen ‘ 𝑥 ) ↾t 𝐴 ) ∈ 2ndω ↔ ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) ) |
| 18 |
15 17
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) ∧ 𝑥 ≼ ω ) → ( ( topGen ‘ 𝑥 ) = 𝐽 → ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) ) |
| 19 |
18
|
expimpd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ TopBases ) → ( ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) ) |
| 20 |
19
|
rexlimdva |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) ) |
| 21 |
1 20
|
biimtrid |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐽 ∈ 2ndω → ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) ) |
| 22 |
21
|
impcom |
⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ∈ 𝑉 ) → ( 𝐽 ↾t 𝐴 ) ∈ 2ndω ) |