| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2ndcsep.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
is2ndc |
⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) |
| 3 |
|
vex |
⊢ 𝑏 ∈ V |
| 4 |
|
difss |
⊢ ( 𝑏 ∖ { ∅ } ) ⊆ 𝑏 |
| 5 |
|
ssdomg |
⊢ ( 𝑏 ∈ V → ( ( 𝑏 ∖ { ∅ } ) ⊆ 𝑏 → ( 𝑏 ∖ { ∅ } ) ≼ 𝑏 ) ) |
| 6 |
3 4 5
|
mp2 |
⊢ ( 𝑏 ∖ { ∅ } ) ≼ 𝑏 |
| 7 |
|
simpr |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → 𝑏 ≼ ω ) |
| 8 |
|
domtr |
⊢ ( ( ( 𝑏 ∖ { ∅ } ) ≼ 𝑏 ∧ 𝑏 ≼ ω ) → ( 𝑏 ∖ { ∅ } ) ≼ ω ) |
| 9 |
6 7 8
|
sylancr |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → ( 𝑏 ∖ { ∅ } ) ≼ ω ) |
| 10 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ↔ ( 𝑦 ∈ 𝑏 ∧ 𝑦 ≠ ∅ ) ) |
| 11 |
|
n0 |
⊢ ( 𝑦 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝑦 ) |
| 12 |
|
elunii |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑏 ) → 𝑧 ∈ ∪ 𝑏 ) |
| 13 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑏 ) → 𝑧 ∈ 𝑦 ) |
| 14 |
12 13
|
jca |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑏 ) → ( 𝑧 ∈ ∪ 𝑏 ∧ 𝑧 ∈ 𝑦 ) ) |
| 15 |
14
|
expcom |
⊢ ( 𝑦 ∈ 𝑏 → ( 𝑧 ∈ 𝑦 → ( 𝑧 ∈ ∪ 𝑏 ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 16 |
15
|
eximdv |
⊢ ( 𝑦 ∈ 𝑏 → ( ∃ 𝑧 𝑧 ∈ 𝑦 → ∃ 𝑧 ( 𝑧 ∈ ∪ 𝑏 ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 17 |
16
|
imp |
⊢ ( ( 𝑦 ∈ 𝑏 ∧ ∃ 𝑧 𝑧 ∈ 𝑦 ) → ∃ 𝑧 ( 𝑧 ∈ ∪ 𝑏 ∧ 𝑧 ∈ 𝑦 ) ) |
| 18 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 ↔ ∃ 𝑧 ( 𝑧 ∈ ∪ 𝑏 ∧ 𝑧 ∈ 𝑦 ) ) |
| 19 |
17 18
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝑏 ∧ ∃ 𝑧 𝑧 ∈ 𝑦 ) → ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 ) |
| 20 |
11 19
|
sylan2b |
⊢ ( ( 𝑦 ∈ 𝑏 ∧ 𝑦 ≠ ∅ ) → ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 ) |
| 21 |
10 20
|
sylbi |
⊢ ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 ) |
| 22 |
21
|
rgen |
⊢ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 |
| 23 |
|
vuniex |
⊢ ∪ 𝑏 ∈ V |
| 24 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑦 ) → ( 𝑧 ∈ 𝑦 ↔ ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) |
| 25 |
23 24
|
axcc4dom |
⊢ ( ( ( 𝑏 ∖ { ∅ } ) ≼ ω ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ∃ 𝑧 ∈ ∪ 𝑏 𝑧 ∈ 𝑦 ) → ∃ 𝑓 ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) |
| 26 |
9 22 25
|
sylancl |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → ∃ 𝑓 ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) |
| 27 |
|
frn |
⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ran 𝑓 ⊆ ∪ 𝑏 ) |
| 28 |
27
|
ad2antrl |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ran 𝑓 ⊆ ∪ 𝑏 ) |
| 29 |
|
vex |
⊢ 𝑓 ∈ V |
| 30 |
29
|
rnex |
⊢ ran 𝑓 ∈ V |
| 31 |
30
|
elpw |
⊢ ( ran 𝑓 ∈ 𝒫 ∪ 𝑏 ↔ ran 𝑓 ⊆ ∪ 𝑏 ) |
| 32 |
28 31
|
sylibr |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ran 𝑓 ∈ 𝒫 ∪ 𝑏 ) |
| 33 |
|
omelon |
⊢ ω ∈ On |
| 34 |
7
|
adantr |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝑏 ≼ ω ) |
| 35 |
|
ondomen |
⊢ ( ( ω ∈ On ∧ 𝑏 ≼ ω ) → 𝑏 ∈ dom card ) |
| 36 |
33 34 35
|
sylancr |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝑏 ∈ dom card ) |
| 37 |
|
ssnum |
⊢ ( ( 𝑏 ∈ dom card ∧ ( 𝑏 ∖ { ∅ } ) ⊆ 𝑏 ) → ( 𝑏 ∖ { ∅ } ) ∈ dom card ) |
| 38 |
36 4 37
|
sylancl |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( 𝑏 ∖ { ∅ } ) ∈ dom card ) |
| 39 |
|
ffn |
⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → 𝑓 Fn ( 𝑏 ∖ { ∅ } ) ) |
| 40 |
39
|
ad2antrl |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝑓 Fn ( 𝑏 ∖ { ∅ } ) ) |
| 41 |
|
dffn4 |
⊢ ( 𝑓 Fn ( 𝑏 ∖ { ∅ } ) ↔ 𝑓 : ( 𝑏 ∖ { ∅ } ) –onto→ ran 𝑓 ) |
| 42 |
40 41
|
sylib |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → 𝑓 : ( 𝑏 ∖ { ∅ } ) –onto→ ran 𝑓 ) |
| 43 |
|
fodomnum |
⊢ ( ( 𝑏 ∖ { ∅ } ) ∈ dom card → ( 𝑓 : ( 𝑏 ∖ { ∅ } ) –onto→ ran 𝑓 → ran 𝑓 ≼ ( 𝑏 ∖ { ∅ } ) ) ) |
| 44 |
38 42 43
|
sylc |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ran 𝑓 ≼ ( 𝑏 ∖ { ∅ } ) ) |
| 45 |
9
|
adantr |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( 𝑏 ∖ { ∅ } ) ≼ ω ) |
| 46 |
|
domtr |
⊢ ( ( ran 𝑓 ≼ ( 𝑏 ∖ { ∅ } ) ∧ ( 𝑏 ∖ { ∅ } ) ≼ ω ) → ran 𝑓 ≼ ω ) |
| 47 |
44 45 46
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ran 𝑓 ≼ ω ) |
| 48 |
|
tgcl |
⊢ ( 𝑏 ∈ TopBases → ( topGen ‘ 𝑏 ) ∈ Top ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( topGen ‘ 𝑏 ) ∈ Top ) |
| 50 |
|
unitg |
⊢ ( 𝑏 ∈ V → ∪ ( topGen ‘ 𝑏 ) = ∪ 𝑏 ) |
| 51 |
50
|
elv |
⊢ ∪ ( topGen ‘ 𝑏 ) = ∪ 𝑏 |
| 52 |
51
|
eqcomi |
⊢ ∪ 𝑏 = ∪ ( topGen ‘ 𝑏 ) |
| 53 |
52
|
clsss3 |
⊢ ( ( ( topGen ‘ 𝑏 ) ∈ Top ∧ ran 𝑓 ⊆ ∪ 𝑏 ) → ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) ⊆ ∪ 𝑏 ) |
| 54 |
49 28 53
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) ⊆ ∪ 𝑏 ) |
| 55 |
|
ne0i |
⊢ ( 𝑥 ∈ 𝑦 → 𝑦 ≠ ∅ ) |
| 56 |
55
|
anim2i |
⊢ ( ( 𝑦 ∈ 𝑏 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑦 ∈ 𝑏 ∧ 𝑦 ≠ ∅ ) ) |
| 57 |
56 10
|
sylibr |
⊢ ( ( 𝑦 ∈ 𝑏 ∧ 𝑥 ∈ 𝑦 ) → 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ) |
| 58 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn ( 𝑏 ∖ { ∅ } ) ∧ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ran 𝑓 ) |
| 59 |
39 58
|
sylan |
⊢ ( ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ran 𝑓 ) |
| 60 |
|
inelcm |
⊢ ( ( ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ∧ ( 𝑓 ‘ 𝑦 ) ∈ ran 𝑓 ) → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) |
| 61 |
60
|
expcom |
⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ran 𝑓 → ( ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) |
| 62 |
59 61
|
syl |
⊢ ( ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ) → ( ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) |
| 63 |
62
|
ex |
⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ( ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) |
| 64 |
63
|
a2d |
⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ( ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) |
| 65 |
57 64
|
syl7 |
⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ( ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ( ( 𝑦 ∈ 𝑏 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) |
| 66 |
65
|
exp4a |
⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ( ( 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ( 𝑦 ∈ 𝑏 → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) ) |
| 67 |
66
|
ralimdv2 |
⊢ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 → ( ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 → ∀ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) |
| 68 |
67
|
imp |
⊢ ( ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) → ∀ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) |
| 69 |
68
|
ad2antlr |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → ∀ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) |
| 70 |
|
eqidd |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → ( topGen ‘ 𝑏 ) = ( topGen ‘ 𝑏 ) ) |
| 71 |
52
|
a1i |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → ∪ 𝑏 = ∪ ( topGen ‘ 𝑏 ) ) |
| 72 |
|
simplll |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → 𝑏 ∈ TopBases ) |
| 73 |
28
|
adantr |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → ran 𝑓 ⊆ ∪ 𝑏 ) |
| 74 |
|
simpr |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → 𝑥 ∈ ∪ 𝑏 ) |
| 75 |
70 71 72 73 74
|
elcls3 |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → ( 𝑥 ∈ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) ↔ ∀ 𝑦 ∈ 𝑏 ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ran 𝑓 ) ≠ ∅ ) ) ) |
| 76 |
69 75
|
mpbird |
⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) ∧ 𝑥 ∈ ∪ 𝑏 ) → 𝑥 ∈ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) ) |
| 77 |
54 76
|
eqelssd |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) = ∪ 𝑏 ) |
| 78 |
|
breq1 |
⊢ ( 𝑥 = ran 𝑓 → ( 𝑥 ≼ ω ↔ ran 𝑓 ≼ ω ) ) |
| 79 |
|
fveqeq2 |
⊢ ( 𝑥 = ran 𝑓 → ( ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ↔ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) = ∪ 𝑏 ) ) |
| 80 |
78 79
|
anbi12d |
⊢ ( 𝑥 = ran 𝑓 → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ↔ ( ran 𝑓 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) = ∪ 𝑏 ) ) ) |
| 81 |
80
|
rspcev |
⊢ ( ( ran 𝑓 ∈ 𝒫 ∪ 𝑏 ∧ ( ran 𝑓 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ ran 𝑓 ) = ∪ 𝑏 ) ) → ∃ 𝑥 ∈ 𝒫 ∪ 𝑏 ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ) |
| 82 |
32 47 77 81
|
syl12anc |
⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) ∧ ( 𝑓 : ( 𝑏 ∖ { ∅ } ) ⟶ ∪ 𝑏 ∧ ∀ 𝑦 ∈ ( 𝑏 ∖ { ∅ } ) ( 𝑓 ‘ 𝑦 ) ∈ 𝑦 ) ) → ∃ 𝑥 ∈ 𝒫 ∪ 𝑏 ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ) |
| 83 |
26 82
|
exlimddv |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → ∃ 𝑥 ∈ 𝒫 ∪ 𝑏 ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ) |
| 84 |
|
unieq |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ∪ ( topGen ‘ 𝑏 ) = ∪ 𝐽 ) |
| 85 |
84 52 1
|
3eqtr4g |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ∪ 𝑏 = 𝑋 ) |
| 86 |
85
|
pweqd |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → 𝒫 ∪ 𝑏 = 𝒫 𝑋 ) |
| 87 |
|
fveq2 |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( cls ‘ ( topGen ‘ 𝑏 ) ) = ( cls ‘ 𝐽 ) ) |
| 88 |
87
|
fveq1d |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ) |
| 89 |
88 85
|
eqeq12d |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) |
| 90 |
89
|
anbi2d |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ↔ ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) ) |
| 91 |
86 90
|
rexeqbidv |
⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ∃ 𝑥 ∈ 𝒫 ∪ 𝑏 ( 𝑥 ≼ ω ∧ ( ( cls ‘ ( topGen ‘ 𝑏 ) ) ‘ 𝑥 ) = ∪ 𝑏 ) ↔ ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) ) |
| 92 |
83 91
|
syl5ibcom |
⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑏 ≼ ω ) → ( ( topGen ‘ 𝑏 ) = 𝐽 → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) ) |
| 93 |
92
|
impr |
⊢ ( ( 𝑏 ∈ TopBases ∧ ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) |
| 94 |
93
|
rexlimiva |
⊢ ( ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) |
| 95 |
2 94
|
sylbi |
⊢ ( 𝐽 ∈ 2ndω → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝑥 ≼ ω ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = 𝑋 ) ) |