Step |
Hyp |
Ref |
Expression |
1 |
|
is2ndc |
⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) |
2 |
|
simprr |
⊢ ( ( 𝑥 ∈ TopBases ∧ ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) → ( topGen ‘ 𝑥 ) = 𝐽 ) |
3 |
|
tgcl |
⊢ ( 𝑥 ∈ TopBases → ( topGen ‘ 𝑥 ) ∈ Top ) |
4 |
3
|
adantr |
⊢ ( ( 𝑥 ∈ TopBases ∧ ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) → ( topGen ‘ 𝑥 ) ∈ Top ) |
5 |
2 4
|
eqeltrrd |
⊢ ( ( 𝑥 ∈ TopBases ∧ ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) → 𝐽 ∈ Top ) |
6 |
5
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → 𝐽 ∈ Top ) |
7 |
1 6
|
sylbi |
⊢ ( 𝐽 ∈ 2ndω → 𝐽 ∈ Top ) |