| Step | Hyp | Ref | Expression | 
						
							| 1 |  | is2ndc | ⊢ ( 𝐽  ∈  2ndω  ↔  ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 ) ) | 
						
							| 2 |  | simprr | ⊢ ( ( 𝑥  ∈  TopBases  ∧  ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 ) )  →  ( topGen ‘ 𝑥 )  =  𝐽 ) | 
						
							| 3 |  | tgcl | ⊢ ( 𝑥  ∈  TopBases  →  ( topGen ‘ 𝑥 )  ∈  Top ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑥  ∈  TopBases  ∧  ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 ) )  →  ( topGen ‘ 𝑥 )  ∈  Top ) | 
						
							| 5 | 2 4 | eqeltrrd | ⊢ ( ( 𝑥  ∈  TopBases  ∧  ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 ) )  →  𝐽  ∈  Top ) | 
						
							| 6 | 5 | rexlimiva | ⊢ ( ∃ 𝑥  ∈  TopBases ( 𝑥  ≼  ω  ∧  ( topGen ‘ 𝑥 )  =  𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 7 | 1 6 | sylbi | ⊢ ( 𝐽  ∈  2ndω  →  𝐽  ∈  Top ) |