Step |
Hyp |
Ref |
Expression |
1 |
|
ima0 |
⊢ ( 2nd “ ∅ ) = ∅ |
2 |
|
xpeq2 |
⊢ ( 𝐵 = ∅ → ( 𝐴 × 𝐵 ) = ( 𝐴 × ∅ ) ) |
3 |
|
xp0 |
⊢ ( 𝐴 × ∅ ) = ∅ |
4 |
2 3
|
eqtrdi |
⊢ ( 𝐵 = ∅ → ( 𝐴 × 𝐵 ) = ∅ ) |
5 |
4
|
imaeq2d |
⊢ ( 𝐵 = ∅ → ( 2nd “ ( 𝐴 × 𝐵 ) ) = ( 2nd “ ∅ ) ) |
6 |
|
id |
⊢ ( 𝐵 = ∅ → 𝐵 = ∅ ) |
7 |
1 5 6
|
3eqtr4a |
⊢ ( 𝐵 = ∅ → ( 2nd “ ( 𝐴 × 𝐵 ) ) = 𝐵 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 = ∅ ) → ( 2nd “ ( 𝐴 × 𝐵 ) ) = 𝐵 ) |
9 |
|
xpnz |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
10 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
11 |
|
fofn |
⊢ ( 2nd : V –onto→ V → 2nd Fn V ) |
12 |
10 11
|
mp1i |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → 2nd Fn V ) |
13 |
|
ssv |
⊢ ( 𝐴 × 𝐵 ) ⊆ V |
14 |
13
|
a1i |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 × 𝐵 ) ⊆ V ) |
15 |
12 14
|
fvelimabd |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝑦 ∈ ( 2nd “ ( 𝐴 × 𝐵 ) ) ↔ ∃ 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 2nd ‘ 𝑝 ) = 𝑦 ) ) |
16 |
9 15
|
sylbi |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( 𝑦 ∈ ( 2nd “ ( 𝐴 × 𝐵 ) ) ↔ ∃ 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 2nd ‘ 𝑝 ) = 𝑦 ) ) |
17 |
|
simpr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( 2nd ‘ 𝑝 ) = 𝑦 ) → ( 2nd ‘ 𝑝 ) = 𝑦 ) |
18 |
|
xp2nd |
⊢ ( 𝑝 ∈ ( 𝐴 × 𝐵 ) → ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) |
19 |
18
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( 2nd ‘ 𝑝 ) = 𝑦 ) → ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) |
20 |
17 19
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ 𝑝 ∈ ( 𝐴 × 𝐵 ) ) ∧ ( 2nd ‘ 𝑝 ) = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
21 |
20
|
r19.29an |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ ∃ 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 2nd ‘ 𝑝 ) = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
22 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
23 |
22
|
biimpi |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
25 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) |
26 |
25
|
ancoms |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) |
27 |
26
|
adantll |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) |
28 |
|
fveqeq2 |
⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( ( 2nd ‘ 𝑝 ) = 𝑦 ↔ ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 ) ) |
29 |
28
|
adantl |
⊢ ( ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑝 = 〈 𝑥 , 𝑦 〉 ) → ( ( 2nd ‘ 𝑝 ) = 𝑦 ↔ ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 ) ) |
30 |
|
vex |
⊢ 𝑥 ∈ V |
31 |
|
vex |
⊢ 𝑦 ∈ V |
32 |
30 31
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 |
33 |
32
|
a1i |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 ) |
34 |
27 29 33
|
rspcedvd |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 2nd ‘ 𝑝 ) = 𝑦 ) |
35 |
24 34
|
exlimddv |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 2nd ‘ 𝑝 ) = 𝑦 ) |
36 |
21 35
|
impbida |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ∃ 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 2nd ‘ 𝑝 ) = 𝑦 ↔ 𝑦 ∈ 𝐵 ) ) |
37 |
16 36
|
bitrd |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( 𝑦 ∈ ( 2nd “ ( 𝐴 × 𝐵 ) ) ↔ 𝑦 ∈ 𝐵 ) ) |
38 |
37
|
eqrdv |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( 2nd “ ( 𝐴 × 𝐵 ) ) = 𝐵 ) |
39 |
8 38
|
pm2.61dane |
⊢ ( 𝐴 ≠ ∅ → ( 2nd “ ( 𝐴 × 𝐵 ) ) = 𝐵 ) |