| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-inr |
⊢ inr = ( 𝑥 ∈ V ↦ 〈 1o , 𝑥 〉 ) |
| 2 |
|
opeq2 |
⊢ ( 𝑥 = 𝑋 → 〈 1o , 𝑥 〉 = 〈 1o , 𝑋 〉 ) |
| 3 |
|
elex |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ V ) |
| 4 |
|
opex |
⊢ 〈 1o , 𝑋 〉 ∈ V |
| 5 |
4
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → 〈 1o , 𝑋 〉 ∈ V ) |
| 6 |
1 2 3 5
|
fvmptd3 |
⊢ ( 𝑋 ∈ 𝑉 → ( inr ‘ 𝑋 ) = 〈 1o , 𝑋 〉 ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝑋 ∈ 𝑉 → ( 2nd ‘ ( inr ‘ 𝑋 ) ) = ( 2nd ‘ 〈 1o , 𝑋 〉 ) ) |
| 8 |
|
1oex |
⊢ 1o ∈ V |
| 9 |
|
op2ndg |
⊢ ( ( 1o ∈ V ∧ 𝑋 ∈ 𝑉 ) → ( 2nd ‘ 〈 1o , 𝑋 〉 ) = 𝑋 ) |
| 10 |
8 9
|
mpan |
⊢ ( 𝑋 ∈ 𝑉 → ( 2nd ‘ 〈 1o , 𝑋 〉 ) = 𝑋 ) |
| 11 |
7 10
|
eqtrd |
⊢ ( 𝑋 ∈ 𝑉 → ( 2nd ‘ ( inr ‘ 𝑋 ) ) = 𝑋 ) |