| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2ndresdju.u | 
							⊢ 𝑈  =  ∪  𝑥  ∈  𝑋 ( { 𝑥 }  ×  𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							2ndresdju.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							2ndresdju.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑊 )  | 
						
						
							| 4 | 
							
								
							 | 
							2ndresdju.1 | 
							⊢ ( 𝜑  →  Disj  𝑥  ∈  𝑋 𝐶 )  | 
						
						
							| 5 | 
							
								
							 | 
							2ndresdju.2 | 
							⊢ ( 𝜑  →  ∪  𝑥  ∈  𝑋 𝐶  =  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							fo2nd | 
							⊢ 2nd  : V –onto→ V  | 
						
						
							| 7 | 
							
								
							 | 
							fofn | 
							⊢ ( 2nd  : V –onto→ V  →  2nd   Fn  V )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							mp1i | 
							⊢ ( 𝜑  →  2nd   Fn  V )  | 
						
						
							| 9 | 
							
								
							 | 
							ssv | 
							⊢ 𝑈  ⊆  V  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑈  ⊆  V )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							fnssresd | 
							⊢ ( 𝜑  →  ( 2nd   ↾  𝑈 )  Fn  𝑈 )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ∈  𝑈 )  | 
						
						
							| 13 | 
							
								12
							 | 
							fvresd | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( 2nd  ‘ 𝑢 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							djussxp2 | 
							⊢ ∪  𝑥  ∈  𝑋 ( { 𝑥 }  ×  𝐶 )  ⊆  ( 𝑋  ×  ∪  𝑥  ∈  𝑋 𝐶 )  | 
						
						
							| 15 | 
							
								5
							 | 
							xpeq2d | 
							⊢ ( 𝜑  →  ( 𝑋  ×  ∪  𝑥  ∈  𝑋 𝐶 )  =  ( 𝑋  ×  𝐴 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sseqtrid | 
							⊢ ( 𝜑  →  ∪  𝑥  ∈  𝑋 ( { 𝑥 }  ×  𝐶 )  ⊆  ( 𝑋  ×  𝐴 ) )  | 
						
						
							| 17 | 
							
								1 16
							 | 
							eqsstrid | 
							⊢ ( 𝜑  →  𝑈  ⊆  ( 𝑋  ×  𝐴 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  𝑢  ∈  ( 𝑋  ×  𝐴 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							xp2nd | 
							⊢ ( 𝑢  ∈  ( 𝑋  ×  𝐴 )  →  ( 2nd  ‘ 𝑢 )  ∈  𝐴 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( 2nd  ‘ 𝑢 )  ∈  𝐴 )  | 
						
						
							| 21 | 
							
								13 20
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  →  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  ∈  𝐴 )  | 
						
						
							| 22 | 
							
								21
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝑈 ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  ∈  𝐴 )  | 
						
						
							| 23 | 
							
								
							 | 
							ffnfv | 
							⊢ ( ( 2nd   ↾  𝑈 ) : 𝑈 ⟶ 𝐴  ↔  ( ( 2nd   ↾  𝑈 )  Fn  𝑈  ∧  ∀ 𝑢  ∈  𝑈 ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  ∈  𝐴 ) )  | 
						
						
							| 24 | 
							
								11 22 23
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  ( 2nd   ↾  𝑈 ) : 𝑈 ⟶ 𝐴 )  | 
						
						
							| 25 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 26 | 
							
								
							 | 
							nfiu1 | 
							⊢ Ⅎ 𝑥 ∪  𝑥  ∈  𝑋 ( { 𝑥 }  ×  𝐶 )  | 
						
						
							| 27 | 
							
								1 26
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑥 𝑈  | 
						
						
							| 28 | 
							
								27
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑢  ∈  𝑈  | 
						
						
							| 29 | 
							
								25 28
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝜑  ∧  𝑢  ∈  𝑈 )  | 
						
						
							| 30 | 
							
								27
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑣  ∈  𝑈  | 
						
						
							| 31 | 
							
								29 30
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  | 
						
						
							| 32 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 2nd   | 
						
						
							| 33 | 
							
								32 27
							 | 
							nfres | 
							⊢ Ⅎ 𝑥 ( 2nd   ↾  𝑈 )  | 
						
						
							| 34 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝑢  | 
						
						
							| 35 | 
							
								33 34
							 | 
							nffv | 
							⊢ Ⅎ 𝑥 ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  | 
						
						
							| 36 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑥 𝑣  | 
						
						
							| 37 | 
							
								33 36
							 | 
							nffv | 
							⊢ Ⅎ 𝑥 ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 )  | 
						
						
							| 38 | 
							
								35 37
							 | 
							nfeq | 
							⊢ Ⅎ 𝑥 ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 )  | 
						
						
							| 39 | 
							
								31 38
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑢  =  𝑣  | 
						
						
							| 41 | 
							
								1
							 | 
							eleq2i | 
							⊢ ( 𝑢  ∈  𝑈  ↔  𝑢  ∈  ∪  𝑥  ∈  𝑋 ( { 𝑥 }  ×  𝐶 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							eliunxp | 
							⊢ ( 𝑢  ∈  ∪  𝑥  ∈  𝑋 ( { 𝑥 }  ×  𝐶 )  ↔  ∃ 𝑥 ∃ 𝑐 ( 𝑢  =  〈 𝑥 ,  𝑐 〉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑐  ∈  𝐶 ) ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							sylbb | 
							⊢ ( 𝑢  ∈  𝑈  →  ∃ 𝑥 ∃ 𝑐 ( 𝑢  =  〈 𝑥 ,  𝑐 〉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑐  ∈  𝐶 ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ad3antlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  →  ∃ 𝑥 ∃ 𝑐 ( 𝑢  =  〈 𝑥 ,  𝑐 〉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑐  ∈  𝐶 ) ) )  | 
						
						
							| 45 | 
							
								1
							 | 
							eleq2i | 
							⊢ ( 𝑣  ∈  𝑈  ↔  𝑣  ∈  ∪  𝑥  ∈  𝑋 ( { 𝑥 }  ×  𝐶 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							eliunxp | 
							⊢ ( 𝑣  ∈  ∪  𝑥  ∈  𝑋 ( { 𝑥 }  ×  𝐶 )  ↔  ∃ 𝑥 ∃ 𝑑 ( 𝑣  =  〈 𝑥 ,  𝑑 〉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑑  ∈  𝐶 ) ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							bitri | 
							⊢ ( 𝑣  ∈  𝑈  ↔  ∃ 𝑥 ∃ 𝑑 ( 𝑣  =  〈 𝑥 ,  𝑑 〉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑑  ∈  𝐶 ) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 ∃ 𝑑 ( 𝑣  =  〈 𝑥 ,  𝑑 〉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑑  ∈  𝐶 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑣  =  〈 𝑦 ,  𝑑 〉  | 
						
						
							| 50 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑦  ∈  𝑋  | 
						
						
							| 51 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐶  | 
						
						
							| 52 | 
							
								51
							 | 
							nfcri | 
							⊢ Ⅎ 𝑥 𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶  | 
						
						
							| 53 | 
							
								50 52
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  | 
						
						
							| 54 | 
							
								49 53
							 | 
							nfan | 
							⊢ Ⅎ 𝑥 ( 𝑣  =  〈 𝑦 ,  𝑑 〉  ∧  ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							nfex | 
							⊢ Ⅎ 𝑥 ∃ 𝑑 ( 𝑣  =  〈 𝑦 ,  𝑑 〉  ∧  ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) )  | 
						
						
							| 56 | 
							
								
							 | 
							opeq1 | 
							⊢ ( 𝑥  =  𝑦  →  〈 𝑥 ,  𝑑 〉  =  〈 𝑦 ,  𝑑 〉 )  | 
						
						
							| 57 | 
							
								56
							 | 
							eqeq2d | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑣  =  〈 𝑥 ,  𝑑 〉  ↔  𝑣  =  〈 𝑦 ,  𝑑 〉 ) )  | 
						
						
							| 58 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝑋  ↔  𝑦  ∈  𝑋 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑥  =  𝑦  →  𝐶  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  | 
						
						
							| 60 | 
							
								59
							 | 
							eleq2d | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑑  ∈  𝐶  ↔  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) )  | 
						
						
							| 61 | 
							
								58 60
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝑋  ∧  𝑑  ∈  𝐶 )  ↔  ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) )  | 
						
						
							| 62 | 
							
								57 61
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝑣  =  〈 𝑥 ,  𝑑 〉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑑  ∈  𝐶 ) )  ↔  ( 𝑣  =  〈 𝑦 ,  𝑑 〉  ∧  ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							exbidv | 
							⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑑 ( 𝑣  =  〈 𝑥 ,  𝑑 〉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑑  ∈  𝐶 ) )  ↔  ∃ 𝑑 ( 𝑣  =  〈 𝑦 ,  𝑑 〉  ∧  ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) ) )  | 
						
						
							| 64 | 
							
								48 55 63
							 | 
							cbvexv1 | 
							⊢ ( ∃ 𝑥 ∃ 𝑑 ( 𝑣  =  〈 𝑥 ,  𝑑 〉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑑  ∈  𝐶 ) )  ↔  ∃ 𝑦 ∃ 𝑑 ( 𝑣  =  〈 𝑦 ,  𝑑 〉  ∧  ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) )  | 
						
						
							| 65 | 
							
								47 64
							 | 
							sylbb | 
							⊢ ( 𝑣  ∈  𝑈  →  ∃ 𝑦 ∃ 𝑑 ( 𝑣  =  〈 𝑦 ,  𝑑 〉  ∧  ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							ad5antlr | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  →  ∃ 𝑦 ∃ 𝑑 ( 𝑣  =  〈 𝑦 ,  𝑑 〉  ∧  ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) ) )  | 
						
						
							| 67 | 
							
								4
							 | 
							ad9antr | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  Disj  𝑥  ∈  𝑋 𝐶 )  | 
						
						
							| 68 | 
							
								
							 | 
							simp-5r | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑥  ∈  𝑋 )  | 
						
						
							| 69 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑦  ∈  𝑋 )  | 
						
						
							| 70 | 
							
								
							 | 
							simp-4r | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑐  ∈  𝐶 )  | 
						
						
							| 71 | 
							
								
							 | 
							simp-7r | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							simp-9r | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑢  ∈  𝑈 )  | 
						
						
							| 73 | 
							
								72
							 | 
							fvresd | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( 2nd  ‘ 𝑢 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							simp-6r | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑢  =  〈 𝑥 ,  𝑐 〉 )  | 
						
						
							| 75 | 
							
								74
							 | 
							fveq2d | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑢 )  =  ( 2nd  ‘ 〈 𝑥 ,  𝑐 〉 ) )  | 
						
						
							| 76 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 77 | 
							
								
							 | 
							vex | 
							⊢ 𝑐  ∈  V  | 
						
						
							| 78 | 
							
								76 77
							 | 
							op2nd | 
							⊢ ( 2nd  ‘ 〈 𝑥 ,  𝑐 〉 )  =  𝑐  | 
						
						
							| 79 | 
							
								75 78
							 | 
							eqtrdi | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑢 )  =  𝑐 )  | 
						
						
							| 80 | 
							
								73 79
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  𝑐 )  | 
						
						
							| 81 | 
							
								
							 | 
							simp-8r | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑣  ∈  𝑈 )  | 
						
						
							| 82 | 
							
								81
							 | 
							fvresd | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 )  =  ( 2nd  ‘ 𝑣 ) )  | 
						
						
							| 83 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑣  =  〈 𝑦 ,  𝑑 〉 )  | 
						
						
							| 84 | 
							
								83
							 | 
							fveq2d | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑣 )  =  ( 2nd  ‘ 〈 𝑦 ,  𝑑 〉 ) )  | 
						
						
							| 85 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 86 | 
							
								
							 | 
							vex | 
							⊢ 𝑑  ∈  V  | 
						
						
							| 87 | 
							
								85 86
							 | 
							op2nd | 
							⊢ ( 2nd  ‘ 〈 𝑦 ,  𝑑 〉 )  =  𝑑  | 
						
						
							| 88 | 
							
								84 87
							 | 
							eqtrdi | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  ( 2nd  ‘ 𝑣 )  =  𝑑 )  | 
						
						
							| 89 | 
							
								82 88
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 )  =  𝑑 )  | 
						
						
							| 90 | 
							
								71 80 89
							 | 
							3eqtr3d | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑐  =  𝑑 )  | 
						
						
							| 91 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  | 
						
						
							| 92 | 
							
								90 91
							 | 
							eqeltrd | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑐  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  | 
						
						
							| 93 | 
							
								51 59
							 | 
							disjif | 
							⊢ ( ( Disj  𝑥  ∈  𝑋 𝐶  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  ( 𝑐  ∈  𝐶  ∧  𝑐  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) )  →  𝑥  =  𝑦 )  | 
						
						
							| 94 | 
							
								67 68 69 70 92 93
							 | 
							syl122anc | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑥  =  𝑦 )  | 
						
						
							| 95 | 
							
								94 90
							 | 
							opeq12d | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  〈 𝑥 ,  𝑐 〉  =  〈 𝑦 ,  𝑑 〉 )  | 
						
						
							| 96 | 
							
								95 74 83
							 | 
							3eqtr4d | 
							⊢ ( ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 )  →  𝑢  =  𝑣 )  | 
						
						
							| 97 | 
							
								96
							 | 
							anasss | 
							⊢ ( ( ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  ∧  𝑣  =  〈 𝑦 ,  𝑑 〉 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) )  →  𝑢  =  𝑣 )  | 
						
						
							| 98 | 
							
								97
							 | 
							expl | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  →  ( ( 𝑣  =  〈 𝑦 ,  𝑑 〉  ∧  ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) )  →  𝑢  =  𝑣 ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							exlimdvv | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  →  ( ∃ 𝑦 ∃ 𝑑 ( 𝑣  =  〈 𝑦 ,  𝑑 〉  ∧  ( 𝑦  ∈  𝑋  ∧  𝑑  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐶 ) )  →  𝑢  =  𝑣 ) )  | 
						
						
							| 100 | 
							
								66 99
							 | 
							mpd | 
							⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  𝑥  ∈  𝑋 )  ∧  𝑐  ∈  𝐶 )  →  𝑢  =  𝑣 )  | 
						
						
							| 101 | 
							
								100
							 | 
							anasss | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  ∧  𝑢  =  〈 𝑥 ,  𝑐 〉 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑐  ∈  𝐶 ) )  →  𝑢  =  𝑣 )  | 
						
						
							| 102 | 
							
								101
							 | 
							expl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  →  ( ( 𝑢  =  〈 𝑥 ,  𝑐 〉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑐  ∈  𝐶 ) )  →  𝑢  =  𝑣 ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							exlimdv | 
							⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  →  ( ∃ 𝑐 ( 𝑢  =  〈 𝑥 ,  𝑐 〉  ∧  ( 𝑥  ∈  𝑋  ∧  𝑐  ∈  𝐶 ) )  →  𝑢  =  𝑣 ) )  | 
						
						
							| 104 | 
							
								39 40 44 103
							 | 
							exlimimdd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  ∧  ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 ) )  →  𝑢  =  𝑣 )  | 
						
						
							| 105 | 
							
								104
							 | 
							ex | 
							⊢ ( ( ( 𝜑  ∧  𝑢  ∈  𝑈 )  ∧  𝑣  ∈  𝑈 )  →  ( ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							anasss | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝑈  ∧  𝑣  ∈  𝑈 ) )  →  ( ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							ralrimivva | 
							⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝑈 ∀ 𝑣  ∈  𝑈 ( ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) )  | 
						
						
							| 108 | 
							
								
							 | 
							dff13 | 
							⊢ ( ( 2nd   ↾  𝑈 ) : 𝑈 –1-1→ 𝐴  ↔  ( ( 2nd   ↾  𝑈 ) : 𝑈 ⟶ 𝐴  ∧  ∀ 𝑢  ∈  𝑈 ∀ 𝑣  ∈  𝑈 ( ( ( 2nd   ↾  𝑈 ) ‘ 𝑢 )  =  ( ( 2nd   ↾  𝑈 ) ‘ 𝑣 )  →  𝑢  =  𝑣 ) ) )  | 
						
						
							| 109 | 
							
								24 107 108
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  ( 2nd   ↾  𝑈 ) : 𝑈 –1-1→ 𝐴 )  |