| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2ndresdju.u | 
							⊢ 𝑈  =  ∪  𝑥  ∈  𝑋 ( { 𝑥 }  ×  𝐶 )  | 
						
						
							| 2 | 
							
								
							 | 
							2ndresdju.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							2ndresdju.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑊 )  | 
						
						
							| 4 | 
							
								
							 | 
							2ndresdju.1 | 
							⊢ ( 𝜑  →  Disj  𝑥  ∈  𝑋 𝐶 )  | 
						
						
							| 5 | 
							
								
							 | 
							2ndresdju.2 | 
							⊢ ( 𝜑  →  ∪  𝑥  ∈  𝑋 𝐶  =  𝐴 )  | 
						
						
							| 6 | 
							
								1 2 3 4 5
							 | 
							2ndresdju | 
							⊢ ( 𝜑  →  ( 2nd   ↾  𝑈 ) : 𝑈 –1-1→ 𝐴 )  | 
						
						
							| 7 | 
							
								1
							 | 
							iunfo | 
							⊢ ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ ∪  𝑥  ∈  𝑋 𝐶  | 
						
						
							| 8 | 
							
								
							 | 
							foeq3 | 
							⊢ ( ∪  𝑥  ∈  𝑋 𝐶  =  𝐴  →  ( ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ ∪  𝑥  ∈  𝑋 𝐶  ↔  ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ 𝐴 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							biimpa | 
							⊢ ( ( ∪  𝑥  ∈  𝑋 𝐶  =  𝐴  ∧  ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ ∪  𝑥  ∈  𝑋 𝐶 )  →  ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ 𝐴 )  | 
						
						
							| 10 | 
							
								5 7 9
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ 𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							df-f1o | 
							⊢ ( ( 2nd   ↾  𝑈 ) : 𝑈 –1-1-onto→ 𝐴  ↔  ( ( 2nd   ↾  𝑈 ) : 𝑈 –1-1→ 𝐴  ∧  ( 2nd   ↾  𝑈 ) : 𝑈 –onto→ 𝐴 ) )  | 
						
						
							| 12 | 
							
								6 10 11
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  ( 2nd   ↾  𝑈 ) : 𝑈 –1-1-onto→ 𝐴 )  |