Step |
Hyp |
Ref |
Expression |
1 |
|
elvv |
⊢ ( 𝐴 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 ) |
2 |
|
vex |
⊢ 𝑥 ∈ V |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
2 3
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = 𝑦 |
5 |
2 3
|
op2ndb |
⊢ ∩ ∩ ∩ ◡ { 〈 𝑥 , 𝑦 〉 } = 𝑦 |
6 |
4 5
|
eqtr4i |
⊢ ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) = ∩ ∩ ∩ ◡ { 〈 𝑥 , 𝑦 〉 } |
7 |
|
fveq2 |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝐴 ) = ( 2nd ‘ 〈 𝑥 , 𝑦 〉 ) ) |
8 |
|
sneq |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → { 𝐴 } = { 〈 𝑥 , 𝑦 〉 } ) |
9 |
8
|
cnveqd |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ◡ { 𝐴 } = ◡ { 〈 𝑥 , 𝑦 〉 } ) |
10 |
9
|
inteqd |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ∩ ◡ { 𝐴 } = ∩ ◡ { 〈 𝑥 , 𝑦 〉 } ) |
11 |
10
|
inteqd |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ∩ ∩ ◡ { 𝐴 } = ∩ ∩ ◡ { 〈 𝑥 , 𝑦 〉 } ) |
12 |
11
|
inteqd |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ∩ ∩ ∩ ◡ { 𝐴 } = ∩ ∩ ∩ ◡ { 〈 𝑥 , 𝑦 〉 } ) |
13 |
6 7 12
|
3eqtr4a |
⊢ ( 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝐴 ) = ∩ ∩ ∩ ◡ { 𝐴 } ) |
14 |
13
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝐴 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝐴 ) = ∩ ∩ ∩ ◡ { 𝐴 } ) |
15 |
1 14
|
sylbi |
⊢ ( 𝐴 ∈ ( V × V ) → ( 2nd ‘ 𝐴 ) = ∩ ∩ ∩ ◡ { 𝐴 } ) |