Description: Theorem *11.25 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2nexaln | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2exnaln | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) | |
| 2 | 1 | bicomi | ⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) |
| 3 | 2 | con1bii | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) |