Metamath Proof Explorer


Theorem 2nexaln

Description: Theorem *11.25 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2nexaln ( ¬ ∃ 𝑥𝑦 𝜑 ↔ ∀ 𝑥𝑦 ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 2exnaln ( ∃ 𝑥𝑦 𝜑 ↔ ¬ ∀ 𝑥𝑦 ¬ 𝜑 )
2 1 bicomi ( ¬ ∀ 𝑥𝑦 ¬ 𝜑 ↔ ∃ 𝑥𝑦 𝜑 )
3 2 con1bii ( ¬ ∃ 𝑥𝑦 𝜑 ↔ ∀ 𝑥𝑦 ¬ 𝜑 )