Description: Theorem *11.25 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | 2nexaln | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2exnaln | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) | |
2 | 1 | bicomi | ⊢ ( ¬ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 𝜑 ) |
3 | 2 | con1bii | ⊢ ( ¬ ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ¬ 𝜑 ) |