Step |
Hyp |
Ref |
Expression |
1 |
|
2nn0ind.1 |
⊢ 𝜓 |
2 |
|
2nn0ind.2 |
⊢ 𝜒 |
3 |
|
2nn0ind.3 |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝜃 ∧ 𝜏 ) → 𝜂 ) ) |
4 |
|
2nn0ind.4 |
⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜓 ) ) |
5 |
|
2nn0ind.5 |
⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜒 ) ) |
6 |
|
2nn0ind.6 |
⊢ ( 𝑥 = ( 𝑦 − 1 ) → ( 𝜑 ↔ 𝜃 ) ) |
7 |
|
2nn0ind.7 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜏 ) ) |
8 |
|
2nn0ind.8 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜂 ) ) |
9 |
|
2nn0ind.9 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜌 ) ) |
10 |
|
nn0p1nn |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℕ ) |
11 |
|
oveq1 |
⊢ ( 𝑎 = 1 → ( 𝑎 − 1 ) = ( 1 − 1 ) ) |
12 |
11
|
sbceq1d |
⊢ ( 𝑎 = 1 → ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ↔ [ ( 1 − 1 ) / 𝑥 ] 𝜑 ) ) |
13 |
|
dfsbcq |
⊢ ( 𝑎 = 1 → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ 1 / 𝑥 ] 𝜑 ) ) |
14 |
12 13
|
anbi12d |
⊢ ( 𝑎 = 1 → ( ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ ( 1 − 1 ) / 𝑥 ] 𝜑 ∧ [ 1 / 𝑥 ] 𝜑 ) ) ) |
15 |
|
oveq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 − 1 ) = ( 𝑦 − 1 ) ) |
16 |
15
|
sbceq1d |
⊢ ( 𝑎 = 𝑦 → ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ↔ [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ) ) |
17 |
|
dfsbcq |
⊢ ( 𝑎 = 𝑦 → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
18 |
16 17
|
anbi12d |
⊢ ( 𝑎 = 𝑦 → ( ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
19 |
|
oveq1 |
⊢ ( 𝑎 = ( 𝑦 + 1 ) → ( 𝑎 − 1 ) = ( ( 𝑦 + 1 ) − 1 ) ) |
20 |
19
|
sbceq1d |
⊢ ( 𝑎 = ( 𝑦 + 1 ) → ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ↔ [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ) ) |
21 |
|
dfsbcq |
⊢ ( 𝑎 = ( 𝑦 + 1 ) → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) ) |
22 |
20 21
|
anbi12d |
⊢ ( 𝑎 = ( 𝑦 + 1 ) → ( ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
23 |
|
oveq1 |
⊢ ( 𝑎 = ( 𝐴 + 1 ) → ( 𝑎 − 1 ) = ( ( 𝐴 + 1 ) − 1 ) ) |
24 |
23
|
sbceq1d |
⊢ ( 𝑎 = ( 𝐴 + 1 ) → ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ↔ [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ) ) |
25 |
|
dfsbcq |
⊢ ( 𝑎 = ( 𝐴 + 1 ) → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ ( 𝐴 + 1 ) / 𝑥 ] 𝜑 ) ) |
26 |
24 25
|
anbi12d |
⊢ ( 𝑎 = ( 𝐴 + 1 ) → ( ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝐴 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
27 |
|
ovex |
⊢ ( 1 − 1 ) ∈ V |
28 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
29 |
28
|
eqeq2i |
⊢ ( 𝑥 = ( 1 − 1 ) ↔ 𝑥 = 0 ) |
30 |
29 4
|
sylbi |
⊢ ( 𝑥 = ( 1 − 1 ) → ( 𝜑 ↔ 𝜓 ) ) |
31 |
27 30
|
sbcie |
⊢ ( [ ( 1 − 1 ) / 𝑥 ] 𝜑 ↔ 𝜓 ) |
32 |
1 31
|
mpbir |
⊢ [ ( 1 − 1 ) / 𝑥 ] 𝜑 |
33 |
|
1ex |
⊢ 1 ∈ V |
34 |
33 5
|
sbcie |
⊢ ( [ 1 / 𝑥 ] 𝜑 ↔ 𝜒 ) |
35 |
2 34
|
mpbir |
⊢ [ 1 / 𝑥 ] 𝜑 |
36 |
32 35
|
pm3.2i |
⊢ ( [ ( 1 − 1 ) / 𝑥 ] 𝜑 ∧ [ 1 / 𝑥 ] 𝜑 ) |
37 |
|
simprr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → [ 𝑦 / 𝑥 ] 𝜑 ) |
38 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
39 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
40 |
|
pncan |
⊢ ( ( 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
41 |
38 39 40
|
sylancl |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
42 |
41
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
43 |
42
|
sbceq1d |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → ( [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
44 |
37 43
|
mpbird |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ) |
45 |
|
ovex |
⊢ ( 𝑦 − 1 ) ∈ V |
46 |
45 6
|
sbcie |
⊢ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ↔ 𝜃 ) |
47 |
|
vex |
⊢ 𝑦 ∈ V |
48 |
47 7
|
sbcie |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜏 ) |
49 |
46 48
|
anbi12i |
⊢ ( ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜃 ∧ 𝜏 ) ) |
50 |
|
ovex |
⊢ ( 𝑦 + 1 ) ∈ V |
51 |
50 8
|
sbcie |
⊢ ( [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ↔ 𝜂 ) |
52 |
3 49 51
|
3imtr4g |
⊢ ( 𝑦 ∈ ℕ → ( ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) ) |
53 |
52
|
imp |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) |
54 |
44 53
|
jca |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → ( [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) ) |
55 |
54
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → ( [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
56 |
14 18 22 26 36 55
|
nnind |
⊢ ( ( 𝐴 + 1 ) ∈ ℕ → ( [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝐴 + 1 ) / 𝑥 ] 𝜑 ) ) |
57 |
10 56
|
syl |
⊢ ( 𝐴 ∈ ℕ0 → ( [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝐴 + 1 ) / 𝑥 ] 𝜑 ) ) |
58 |
|
nn0cn |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) |
59 |
|
pncan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
60 |
58 39 59
|
sylancl |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
61 |
60
|
sbceq1d |
⊢ ( 𝐴 ∈ ℕ0 → ( [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
62 |
61
|
biimpa |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ) → [ 𝐴 / 𝑥 ] 𝜑 ) |
63 |
62
|
adantrr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝐴 + 1 ) / 𝑥 ] 𝜑 ) ) → [ 𝐴 / 𝑥 ] 𝜑 ) |
64 |
57 63
|
mpdan |
⊢ ( 𝐴 ∈ ℕ0 → [ 𝐴 / 𝑥 ] 𝜑 ) |
65 |
9
|
sbcieg |
⊢ ( 𝐴 ∈ ℕ0 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜌 ) ) |
66 |
64 65
|
mpbid |
⊢ ( 𝐴 ∈ ℕ0 → 𝜌 ) |