| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn0ind.1 |
⊢ 𝜓 |
| 2 |
|
2nn0ind.2 |
⊢ 𝜒 |
| 3 |
|
2nn0ind.3 |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝜃 ∧ 𝜏 ) → 𝜂 ) ) |
| 4 |
|
2nn0ind.4 |
⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜓 ) ) |
| 5 |
|
2nn0ind.5 |
⊢ ( 𝑥 = 1 → ( 𝜑 ↔ 𝜒 ) ) |
| 6 |
|
2nn0ind.6 |
⊢ ( 𝑥 = ( 𝑦 − 1 ) → ( 𝜑 ↔ 𝜃 ) ) |
| 7 |
|
2nn0ind.7 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜏 ) ) |
| 8 |
|
2nn0ind.8 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜂 ) ) |
| 9 |
|
2nn0ind.9 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜌 ) ) |
| 10 |
|
nn0p1nn |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℕ ) |
| 11 |
|
oveq1 |
⊢ ( 𝑎 = 1 → ( 𝑎 − 1 ) = ( 1 − 1 ) ) |
| 12 |
11
|
sbceq1d |
⊢ ( 𝑎 = 1 → ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ↔ [ ( 1 − 1 ) / 𝑥 ] 𝜑 ) ) |
| 13 |
|
dfsbcq |
⊢ ( 𝑎 = 1 → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ 1 / 𝑥 ] 𝜑 ) ) |
| 14 |
12 13
|
anbi12d |
⊢ ( 𝑎 = 1 → ( ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ ( 1 − 1 ) / 𝑥 ] 𝜑 ∧ [ 1 / 𝑥 ] 𝜑 ) ) ) |
| 15 |
|
oveq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 − 1 ) = ( 𝑦 − 1 ) ) |
| 16 |
15
|
sbceq1d |
⊢ ( 𝑎 = 𝑦 → ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ↔ [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ) ) |
| 17 |
|
dfsbcq |
⊢ ( 𝑎 = 𝑦 → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 18 |
16 17
|
anbi12d |
⊢ ( 𝑎 = 𝑦 → ( ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 19 |
|
oveq1 |
⊢ ( 𝑎 = ( 𝑦 + 1 ) → ( 𝑎 − 1 ) = ( ( 𝑦 + 1 ) − 1 ) ) |
| 20 |
19
|
sbceq1d |
⊢ ( 𝑎 = ( 𝑦 + 1 ) → ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ↔ [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ) ) |
| 21 |
|
dfsbcq |
⊢ ( 𝑎 = ( 𝑦 + 1 ) → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 22 |
20 21
|
anbi12d |
⊢ ( 𝑎 = ( 𝑦 + 1 ) → ( ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
| 23 |
|
oveq1 |
⊢ ( 𝑎 = ( 𝐴 + 1 ) → ( 𝑎 − 1 ) = ( ( 𝐴 + 1 ) − 1 ) ) |
| 24 |
23
|
sbceq1d |
⊢ ( 𝑎 = ( 𝐴 + 1 ) → ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ↔ [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ) ) |
| 25 |
|
dfsbcq |
⊢ ( 𝑎 = ( 𝐴 + 1 ) → ( [ 𝑎 / 𝑥 ] 𝜑 ↔ [ ( 𝐴 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 26 |
24 25
|
anbi12d |
⊢ ( 𝑎 = ( 𝐴 + 1 ) → ( ( [ ( 𝑎 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑎 / 𝑥 ] 𝜑 ) ↔ ( [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝐴 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
| 27 |
|
ovex |
⊢ ( 1 − 1 ) ∈ V |
| 28 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 29 |
28
|
eqeq2i |
⊢ ( 𝑥 = ( 1 − 1 ) ↔ 𝑥 = 0 ) |
| 30 |
29 4
|
sylbi |
⊢ ( 𝑥 = ( 1 − 1 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 31 |
27 30
|
sbcie |
⊢ ( [ ( 1 − 1 ) / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 32 |
1 31
|
mpbir |
⊢ [ ( 1 − 1 ) / 𝑥 ] 𝜑 |
| 33 |
|
1ex |
⊢ 1 ∈ V |
| 34 |
33 5
|
sbcie |
⊢ ( [ 1 / 𝑥 ] 𝜑 ↔ 𝜒 ) |
| 35 |
2 34
|
mpbir |
⊢ [ 1 / 𝑥 ] 𝜑 |
| 36 |
32 35
|
pm3.2i |
⊢ ( [ ( 1 − 1 ) / 𝑥 ] 𝜑 ∧ [ 1 / 𝑥 ] 𝜑 ) |
| 37 |
|
simprr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → [ 𝑦 / 𝑥 ] 𝜑 ) |
| 38 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
| 39 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 40 |
|
pncan |
⊢ ( ( 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
| 41 |
38 39 40
|
sylancl |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
| 43 |
42
|
sbceq1d |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → ( [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 44 |
37 43
|
mpbird |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ) |
| 45 |
|
ovex |
⊢ ( 𝑦 − 1 ) ∈ V |
| 46 |
45 6
|
sbcie |
⊢ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ↔ 𝜃 ) |
| 47 |
|
vex |
⊢ 𝑦 ∈ V |
| 48 |
47 7
|
sbcie |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜏 ) |
| 49 |
46 48
|
anbi12i |
⊢ ( ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜃 ∧ 𝜏 ) ) |
| 50 |
|
ovex |
⊢ ( 𝑦 + 1 ) ∈ V |
| 51 |
50 8
|
sbcie |
⊢ ( [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ↔ 𝜂 ) |
| 52 |
3 49 51
|
3imtr4g |
⊢ ( 𝑦 ∈ ℕ → ( ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 53 |
52
|
imp |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) |
| 54 |
44 53
|
jca |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) → ( [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 55 |
54
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( ( [ ( 𝑦 − 1 ) / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → ( [ ( ( 𝑦 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝑦 + 1 ) / 𝑥 ] 𝜑 ) ) ) |
| 56 |
14 18 22 26 36 55
|
nnind |
⊢ ( ( 𝐴 + 1 ) ∈ ℕ → ( [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝐴 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 57 |
10 56
|
syl |
⊢ ( 𝐴 ∈ ℕ0 → ( [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝐴 + 1 ) / 𝑥 ] 𝜑 ) ) |
| 58 |
|
nn0cn |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) |
| 59 |
|
pncan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 60 |
58 39 59
|
sylancl |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 61 |
60
|
sbceq1d |
⊢ ( 𝐴 ∈ ℕ0 → ( [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 62 |
61
|
biimpa |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ) → [ 𝐴 / 𝑥 ] 𝜑 ) |
| 63 |
62
|
adantrr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( [ ( ( 𝐴 + 1 ) − 1 ) / 𝑥 ] 𝜑 ∧ [ ( 𝐴 + 1 ) / 𝑥 ] 𝜑 ) ) → [ 𝐴 / 𝑥 ] 𝜑 ) |
| 64 |
57 63
|
mpdan |
⊢ ( 𝐴 ∈ ℕ0 → [ 𝐴 / 𝑥 ] 𝜑 ) |
| 65 |
9
|
sbcieg |
⊢ ( 𝐴 ∈ ℕ0 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜌 ) ) |
| 66 |
64 65
|
mpbid |
⊢ ( 𝐴 ∈ ℕ0 → 𝜌 ) |