| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nreu.a |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
2nreu.b |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝐴 ∈ 𝑋 ) |
| 4 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝐵 ∈ 𝑋 ) |
| 5 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝜓 ) |
| 6 |
2
|
sbcieg |
⊢ ( 𝐵 ∈ 𝑋 → ( [ 𝐵 / 𝑥 ] 𝜑 ↔ 𝜒 ) ) |
| 7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) → ( [ 𝐵 / 𝑥 ] 𝜑 ↔ 𝜒 ) ) |
| 8 |
7
|
biimprd |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) → ( 𝜒 → [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| 9 |
8
|
adantld |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝜓 ∧ 𝜒 ) → [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| 10 |
9
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → [ 𝐵 / 𝑥 ] 𝜑 ) |
| 11 |
5 10
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| 12 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → 𝐴 ≠ 𝐵 ) |
| 13 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → 𝐴 ∈ 𝑋 ) |
| 14 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → 𝐵 ∈ 𝑋 ) |
| 15 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) |
| 16 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ [ 𝐴 / 𝑥 ] 𝑥 ≠ 𝑦 ) ) |
| 17 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 18 |
1
|
sbcieg |
⊢ ( 𝐴 ∈ 𝑋 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 19 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
| 20 |
19
|
sbcgf |
⊢ ( 𝐴 ∈ 𝑋 → ( [ 𝐴 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 21 |
18 20
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑋 → ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 22 |
17 21
|
bitrid |
⊢ ( 𝐴 ∈ 𝑋 → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 23 |
|
sbcne12 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑥 ≠ 𝑦 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑥 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ) |
| 24 |
|
csbvarg |
⊢ ( 𝐴 ∈ 𝑋 → ⦋ 𝐴 / 𝑥 ⦌ 𝑥 = 𝐴 ) |
| 25 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑋 → ⦋ 𝐴 / 𝑥 ⦌ 𝑦 = 𝑦 ) |
| 26 |
24 25
|
neeq12d |
⊢ ( 𝐴 ∈ 𝑋 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑥 ≠ ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ↔ 𝐴 ≠ 𝑦 ) ) |
| 27 |
23 26
|
bitrid |
⊢ ( 𝐴 ∈ 𝑋 → ( [ 𝐴 / 𝑥 ] 𝑥 ≠ 𝑦 ↔ 𝐴 ≠ 𝑦 ) ) |
| 28 |
22 27
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑋 → ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ [ 𝐴 / 𝑥 ] 𝑥 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ) ) |
| 29 |
16 28
|
bitrid |
⊢ ( 𝐴 ∈ 𝑋 → ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ) ) |
| 30 |
29
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ) ) |
| 31 |
30
|
sbcbidv |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ [ 𝐵 / 𝑦 ] ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ) ) |
| 32 |
|
sbcan |
⊢ ( [ 𝐵 / 𝑦 ] ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ↔ ( [ 𝐵 / 𝑦 ] ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ [ 𝐵 / 𝑦 ] 𝐴 ≠ 𝑦 ) ) |
| 33 |
|
sbcan |
⊢ ( [ 𝐵 / 𝑦 ] ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( [ 𝐵 / 𝑦 ] 𝜓 ∧ [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 34 |
|
sbcg |
⊢ ( 𝐵 ∈ 𝑋 → ( [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜓 ) ) |
| 35 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 36 |
35
|
sbcbii |
⊢ ( [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) |
| 37 |
|
sbccow |
⊢ ( [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑥 ] 𝜑 ) |
| 38 |
37
|
a1i |
⊢ ( 𝐵 ∈ 𝑋 → ( [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| 39 |
36 38
|
bitrid |
⊢ ( 𝐵 ∈ 𝑋 → ( [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐵 / 𝑥 ] 𝜑 ) ) |
| 40 |
34 39
|
anbi12d |
⊢ ( 𝐵 ∈ 𝑋 → ( ( [ 𝐵 / 𝑦 ] 𝜓 ∧ [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ) ) |
| 41 |
40
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( ( [ 𝐵 / 𝑦 ] 𝜓 ∧ [ 𝐵 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ) ) |
| 42 |
33 41
|
bitrid |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐵 / 𝑦 ] ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ) ) |
| 43 |
|
sbcne12 |
⊢ ( [ 𝐵 / 𝑦 ] 𝐴 ≠ 𝑦 ↔ ⦋ 𝐵 / 𝑦 ⦌ 𝐴 ≠ ⦋ 𝐵 / 𝑦 ⦌ 𝑦 ) |
| 44 |
|
csbconstg |
⊢ ( 𝐵 ∈ 𝑋 → ⦋ 𝐵 / 𝑦 ⦌ 𝐴 = 𝐴 ) |
| 45 |
|
csbvarg |
⊢ ( 𝐵 ∈ 𝑋 → ⦋ 𝐵 / 𝑦 ⦌ 𝑦 = 𝐵 ) |
| 46 |
44 45
|
neeq12d |
⊢ ( 𝐵 ∈ 𝑋 → ( ⦋ 𝐵 / 𝑦 ⦌ 𝐴 ≠ ⦋ 𝐵 / 𝑦 ⦌ 𝑦 ↔ 𝐴 ≠ 𝐵 ) ) |
| 47 |
46
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( ⦋ 𝐵 / 𝑦 ⦌ 𝐴 ≠ ⦋ 𝐵 / 𝑦 ⦌ 𝑦 ↔ 𝐴 ≠ 𝐵 ) ) |
| 48 |
43 47
|
bitrid |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐵 / 𝑦 ] 𝐴 ≠ 𝑦 ↔ 𝐴 ≠ 𝐵 ) ) |
| 49 |
42 48
|
anbi12d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( ( [ 𝐵 / 𝑦 ] ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ [ 𝐵 / 𝑦 ] 𝐴 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) ) |
| 50 |
32 49
|
bitrid |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐵 / 𝑦 ] ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) ) |
| 51 |
31 50
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ( [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) ) |
| 52 |
15 51
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 53 |
|
rspesbca |
⊢ ( ( 𝐵 ∈ 𝑋 ∧ [ 𝐵 / 𝑦 ] [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) → ∃ 𝑦 ∈ 𝑋 [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 54 |
14 52 53
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ∃ 𝑦 ∈ 𝑋 [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 55 |
|
sbcrex |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ↔ ∃ 𝑦 ∈ 𝑋 [ 𝐴 / 𝑥 ] ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 56 |
54 55
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 57 |
|
rspesbca |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ [ 𝐴 / 𝑥 ] ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 58 |
13 56 57
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝜓 ∧ [ 𝐵 / 𝑥 ] 𝜑 ) ∧ 𝐴 ≠ 𝐵 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 59 |
3 4 11 12 58
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 60 |
|
pm4.61 |
⊢ ( ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ ¬ 𝑥 = 𝑦 ) ) |
| 61 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) |
| 62 |
61
|
bicomi |
⊢ ( ¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦 ) |
| 63 |
62
|
anbi2i |
⊢ ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ ¬ 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 64 |
60 63
|
bitri |
⊢ ( ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 65 |
64
|
2rexbii |
⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ∧ 𝑥 ≠ 𝑦 ) ) |
| 66 |
59 65
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 67 |
66
|
olcd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 68 |
|
ianor |
⊢ ( ¬ ( ∃ 𝑥 ∈ 𝑋 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ¬ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 69 |
|
rexnal2 |
⊢ ( ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ¬ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 70 |
69
|
bicomi |
⊢ ( ¬ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 71 |
70
|
orbi2i |
⊢ ( ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ¬ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 72 |
68 71
|
bitri |
⊢ ( ¬ ( ∃ 𝑥 ∈ 𝑋 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ↔ ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 73 |
|
reu2 |
⊢ ( ∃! 𝑥 ∈ 𝑋 𝜑 ↔ ( ∃ 𝑥 ∈ 𝑋 𝜑 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 74 |
72 73
|
xchnxbir |
⊢ ( ¬ ∃! 𝑥 ∈ 𝑋 𝜑 ↔ ( ¬ ∃ 𝑥 ∈ 𝑋 𝜑 ∨ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑋 ¬ ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) ) |
| 75 |
67 74
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝜓 ∧ 𝜒 ) ) → ¬ ∃! 𝑥 ∈ 𝑋 𝜑 ) |
| 76 |
75
|
ex |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝜓 ∧ 𝜒 ) → ¬ ∃! 𝑥 ∈ 𝑋 𝜑 ) ) |