Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
⊢ ( 𝐴 ∈ { ∅ , 1o } → ( 𝐴 = ∅ ∨ 𝐴 = 1o ) ) |
2 |
|
difeq2 |
⊢ ( 𝐴 = ∅ → ( 1o ∖ 𝐴 ) = ( 1o ∖ ∅ ) ) |
3 |
|
dif0 |
⊢ ( 1o ∖ ∅ ) = 1o |
4 |
2 3
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 1o ∖ 𝐴 ) = 1o ) |
5 |
|
difeq2 |
⊢ ( 𝐴 = 1o → ( 1o ∖ 𝐴 ) = ( 1o ∖ 1o ) ) |
6 |
|
difid |
⊢ ( 1o ∖ 1o ) = ∅ |
7 |
5 6
|
eqtrdi |
⊢ ( 𝐴 = 1o → ( 1o ∖ 𝐴 ) = ∅ ) |
8 |
4 7
|
orim12i |
⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = 1o ) → ( ( 1o ∖ 𝐴 ) = 1o ∨ ( 1o ∖ 𝐴 ) = ∅ ) ) |
9 |
8
|
orcomd |
⊢ ( ( 𝐴 = ∅ ∨ 𝐴 = 1o ) → ( ( 1o ∖ 𝐴 ) = ∅ ∨ ( 1o ∖ 𝐴 ) = 1o ) ) |
10 |
1 9
|
syl |
⊢ ( 𝐴 ∈ { ∅ , 1o } → ( ( 1o ∖ 𝐴 ) = ∅ ∨ ( 1o ∖ 𝐴 ) = 1o ) ) |
11 |
|
1on |
⊢ 1o ∈ On |
12 |
|
difexg |
⊢ ( 1o ∈ On → ( 1o ∖ 𝐴 ) ∈ V ) |
13 |
11 12
|
ax-mp |
⊢ ( 1o ∖ 𝐴 ) ∈ V |
14 |
13
|
elpr |
⊢ ( ( 1o ∖ 𝐴 ) ∈ { ∅ , 1o } ↔ ( ( 1o ∖ 𝐴 ) = ∅ ∨ ( 1o ∖ 𝐴 ) = 1o ) ) |
15 |
10 14
|
sylibr |
⊢ ( 𝐴 ∈ { ∅ , 1o } → ( 1o ∖ 𝐴 ) ∈ { ∅ , 1o } ) |
16 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
17 |
15 16
|
eleqtrrdi |
⊢ ( 𝐴 ∈ { ∅ , 1o } → ( 1o ∖ 𝐴 ) ∈ 2o ) |
18 |
17 16
|
eleq2s |
⊢ ( 𝐴 ∈ 2o → ( 1o ∖ 𝐴 ) ∈ 2o ) |