Metamath Proof Explorer


Theorem 2on

Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004) (Proof shortened by Andrew Salmon, 12-Aug-2011) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)

Ref Expression
Assertion 2on 2o ∈ On

Proof

Step Hyp Ref Expression
1 df-2o 2o = suc 1o
2 1on 1o ∈ On
3 2oex 2o ∈ V
4 1 3 eqeltrri suc 1o ∈ V
5 sucexeloni ( ( 1o ∈ On ∧ suc 1o ∈ V ) → suc 1o ∈ On )
6 2 4 5 mp2an suc 1o ∈ On
7 1 6 eqeltri 2o ∈ On