Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004) (Proof shortened by Andrew Salmon, 12-Aug-2011) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 2on | ⊢ 2o ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o | ⊢ 2o = suc 1o | |
2 | 1on | ⊢ 1o ∈ On | |
3 | 2oex | ⊢ 2o ∈ V | |
4 | 1 3 | eqeltrri | ⊢ suc 1o ∈ V |
5 | sucexeloni | ⊢ ( ( 1o ∈ On ∧ suc 1o ∈ V ) → suc 1o ∈ On ) | |
6 | 2 4 5 | mp2an | ⊢ suc 1o ∈ On |
7 | 1 6 | eqeltri | ⊢ 2o ∈ On |