Metamath Proof Explorer


Theorem 2on0

Description: Ordinal two is not zero. (Contributed by Scott Fenton, 17-Jun-2011)

Ref Expression
Assertion 2on0 2o ≠ ∅

Proof

Step Hyp Ref Expression
1 df-2o 2o = suc 1o
2 nsuceq0 suc 1o ≠ ∅
3 1 2 eqnetri 2o ≠ ∅