Metamath Proof Explorer


Theorem 2onn

Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un , see 2onnALT . (Contributed by NM, 28-Sep-2004) Avoid ax-un . (Revised by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion 2onn 2o ∈ ω

Proof

Step Hyp Ref Expression
1 2on 2o ∈ On
2 2ellim ( Lim 𝑥 → 2o𝑥 )
3 2 ax-gen 𝑥 ( Lim 𝑥 → 2o𝑥 )
4 elom ( 2o ∈ ω ↔ ( 2o ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → 2o𝑥 ) ) )
5 1 3 4 mpbir2an 2o ∈ ω