Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
3 |
1 2
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
4 |
|
eqid |
⊢ ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) |
5 |
|
eqid |
⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) |
6 |
|
simpr1 |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
7 |
|
simpr2 |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
8 |
|
simpr3 |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
9 |
3 4 5 6 7 8
|
oppcco |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑥 ) 𝑔 ) ) |
10 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
11 |
2 10 1 8 7 6
|
oppcco |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑥 ) 𝑔 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
12 |
9 11
|
eqtr2d |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) ) |
13 |
12
|
ralrimivw |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) ) |
14 |
13
|
ralrimivw |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) ) |
15 |
14
|
ralrimivvva |
⊢ ( ⊤ → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) ) |
16 |
|
eqid |
⊢ ( comp ‘ ( oppCat ‘ 𝑂 ) ) = ( comp ‘ ( oppCat ‘ 𝑂 ) ) |
17 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
18 |
|
eqidd |
⊢ ( ⊤ → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) |
19 |
1 2
|
2oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝑂 ) ) |
20 |
19
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝐶 ) = ( Base ‘ ( oppCat ‘ 𝑂 ) ) ) |
21 |
1
|
2oppchomf |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
22 |
21
|
a1i |
⊢ ( ⊤ → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
23 |
10 16 17 18 20 22
|
comfeq |
⊢ ( ⊤ → ( ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( oppCat ‘ 𝑂 ) ) 𝑧 ) 𝑓 ) ) ) |
24 |
15 23
|
mpbird |
⊢ ( ⊤ → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
25 |
24
|
mptru |
⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |