Step |
Hyp |
Ref |
Expression |
1 |
|
oppcbas.1 |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
2 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
4 |
2 3
|
homffn |
⊢ ( Homf ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
5 |
|
fnrel |
⊢ ( ( Homf ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → Rel ( Homf ‘ 𝐶 ) ) |
6 |
4 5
|
ax-mp |
⊢ Rel ( Homf ‘ 𝐶 ) |
7 |
|
relxp |
⊢ Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
8 |
4
|
fndmi |
⊢ dom ( Homf ‘ 𝐶 ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
9 |
8
|
releqi |
⊢ ( Rel dom ( Homf ‘ 𝐶 ) ↔ Rel ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
10 |
7 9
|
mpbir |
⊢ Rel dom ( Homf ‘ 𝐶 ) |
11 |
|
tpostpos2 |
⊢ ( ( Rel ( Homf ‘ 𝐶 ) ∧ Rel dom ( Homf ‘ 𝐶 ) ) → tpos tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) ) |
12 |
6 10 11
|
mp2an |
⊢ tpos tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
13 |
|
eqid |
⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) |
14 |
1 2
|
oppchomf |
⊢ tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝑂 ) |
15 |
13 14
|
oppchomf |
⊢ tpos tpos ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
16 |
12 15
|
eqtr3i |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |