Metamath Proof Explorer


Theorem 2optocl

Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995)

Ref Expression
Hypotheses 2optocl.1 𝑅 = ( 𝐶 × 𝐷 )
2optocl.2 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 → ( 𝜑𝜓 ) )
2optocl.3 ( ⟨ 𝑧 , 𝑤 ⟩ = 𝐵 → ( 𝜓𝜒 ) )
2optocl.4 ( ( ( 𝑥𝐶𝑦𝐷 ) ∧ ( 𝑧𝐶𝑤𝐷 ) ) → 𝜑 )
Assertion 2optocl ( ( 𝐴𝑅𝐵𝑅 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 2optocl.1 𝑅 = ( 𝐶 × 𝐷 )
2 2optocl.2 ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 → ( 𝜑𝜓 ) )
3 2optocl.3 ( ⟨ 𝑧 , 𝑤 ⟩ = 𝐵 → ( 𝜓𝜒 ) )
4 2optocl.4 ( ( ( 𝑥𝐶𝑦𝐷 ) ∧ ( 𝑧𝐶𝑤𝐷 ) ) → 𝜑 )
5 3 imbi2d ( ⟨ 𝑧 , 𝑤 ⟩ = 𝐵 → ( ( 𝐴𝑅𝜓 ) ↔ ( 𝐴𝑅𝜒 ) ) )
6 2 imbi2d ( ⟨ 𝑥 , 𝑦 ⟩ = 𝐴 → ( ( ( 𝑧𝐶𝑤𝐷 ) → 𝜑 ) ↔ ( ( 𝑧𝐶𝑤𝐷 ) → 𝜓 ) ) )
7 4 ex ( ( 𝑥𝐶𝑦𝐷 ) → ( ( 𝑧𝐶𝑤𝐷 ) → 𝜑 ) )
8 1 6 7 optocl ( 𝐴𝑅 → ( ( 𝑧𝐶𝑤𝐷 ) → 𝜓 ) )
9 8 com12 ( ( 𝑧𝐶𝑤𝐷 ) → ( 𝐴𝑅𝜓 ) )
10 1 5 9 optocl ( 𝐵𝑅 → ( 𝐴𝑅𝜒 ) )
11 10 impcom ( ( 𝐴𝑅𝐵𝑅 ) → 𝜒 )