Step |
Hyp |
Ref |
Expression |
1 |
|
2optocl.1 |
⊢ 𝑅 = ( 𝐶 × 𝐷 ) |
2 |
|
2optocl.2 |
⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
|
2optocl.3 |
⊢ ( 〈 𝑧 , 𝑤 〉 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
2optocl.4 |
⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) → 𝜑 ) |
5 |
3
|
imbi2d |
⊢ ( 〈 𝑧 , 𝑤 〉 = 𝐵 → ( ( 𝐴 ∈ 𝑅 → 𝜓 ) ↔ ( 𝐴 ∈ 𝑅 → 𝜒 ) ) ) |
6 |
2
|
imbi2d |
⊢ ( 〈 𝑥 , 𝑦 〉 = 𝐴 → ( ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜑 ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜓 ) ) ) |
7 |
4
|
ex |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜑 ) ) |
8 |
1 6 7
|
optocl |
⊢ ( 𝐴 ∈ 𝑅 → ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → 𝜓 ) ) |
9 |
8
|
com12 |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → ( 𝐴 ∈ 𝑅 → 𝜓 ) ) |
10 |
1 5 9
|
optocl |
⊢ ( 𝐵 ∈ 𝑅 → ( 𝐴 ∈ 𝑅 → 𝜒 ) ) |
11 |
10
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) |