Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → 𝑥 = 𝑢 ) |
2 |
|
simplr |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → 𝑦 = 𝑣 ) |
3 |
|
simpr |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
4 |
|
sbequ2 |
⊢ ( 𝑥 = 𝑢 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → [ 𝑣 / 𝑦 ] 𝜑 ) ) |
5 |
1 3 4
|
sylc |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → [ 𝑣 / 𝑦 ] 𝜑 ) |
6 |
|
sbequ2 |
⊢ ( 𝑦 = 𝑣 → ( [ 𝑣 / 𝑦 ] 𝜑 → 𝜑 ) ) |
7 |
2 5 6
|
sylc |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → 𝜑 ) |
8 |
1 2 7
|
jca31 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
9 |
|
simpll |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → 𝑥 = 𝑢 ) |
10 |
|
simplr |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → 𝑦 = 𝑣 ) |
11 |
|
simpr |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → 𝜑 ) |
12 |
|
sbequ1 |
⊢ ( 𝑦 = 𝑣 → ( 𝜑 → [ 𝑣 / 𝑦 ] 𝜑 ) ) |
13 |
10 11 12
|
sylc |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → [ 𝑣 / 𝑦 ] 𝜑 ) |
14 |
|
sbequ1 |
⊢ ( 𝑥 = 𝑢 → ( [ 𝑣 / 𝑦 ] 𝜑 → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
15 |
9 13 14
|
sylc |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
16 |
9 10 15
|
jca31 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
17 |
8 16
|
impbii |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |