Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
2 |
|
simpl |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
3 |
1 2
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
4 |
|
simpl |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑥 = 𝑢 ) |
5 |
3 4
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ 𝑥 = 𝑢 ) |
6 |
|
simpr |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
7 |
1 6
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
8 |
|
pm3.21 |
⊢ ( 𝑥 = 𝑢 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) ) ) |
9 |
5 7 8
|
e11 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) ) |
10 |
|
sbequ2 |
⊢ ( 𝑥 = 𝑢 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → [ 𝑣 / 𝑦 ] 𝜑 ) ) |
11 |
10
|
imdistanri |
⊢ ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) → ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) ) |
12 |
9 11
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) ) |
13 |
|
simpl |
⊢ ( ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) → [ 𝑣 / 𝑦 ] 𝜑 ) |
14 |
12 13
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ [ 𝑣 / 𝑦 ] 𝜑 ) |
15 |
|
simpr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → 𝑦 = 𝑣 ) |
16 |
3 15
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ 𝑦 = 𝑣 ) |
17 |
|
pm3.2 |
⊢ ( [ 𝑣 / 𝑦 ] 𝜑 → ( 𝑦 = 𝑣 → ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑦 = 𝑣 ) ) ) |
18 |
14 16 17
|
e11 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑦 = 𝑣 ) ) |
19 |
|
sbequ2 |
⊢ ( 𝑦 = 𝑣 → ( [ 𝑣 / 𝑦 ] 𝜑 → 𝜑 ) ) |
20 |
19
|
imdistanri |
⊢ ( ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑦 = 𝑣 ) → ( 𝜑 ∧ 𝑦 = 𝑣 ) ) |
21 |
18 20
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ ( 𝜑 ∧ 𝑦 = 𝑣 ) ) |
22 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑣 ) → 𝜑 ) |
23 |
21 22
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ 𝜑 ) |
24 |
|
pm3.2 |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( 𝜑 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |
25 |
3 23 24
|
e11 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ▶ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
26 |
25
|
in1 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
27 |
|
idn1 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
28 |
|
simpl |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
29 |
27 28
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
30 |
29 4
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ 𝑥 = 𝑢 ) |
31 |
29 15
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ 𝑦 = 𝑣 ) |
32 |
|
simpr |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → 𝜑 ) |
33 |
27 32
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ 𝜑 ) |
34 |
|
pm3.21 |
⊢ ( 𝑦 = 𝑣 → ( 𝜑 → ( 𝜑 ∧ 𝑦 = 𝑣 ) ) ) |
35 |
31 33 34
|
e11 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ ( 𝜑 ∧ 𝑦 = 𝑣 ) ) |
36 |
|
sbequ1 |
⊢ ( 𝑦 = 𝑣 → ( 𝜑 → [ 𝑣 / 𝑦 ] 𝜑 ) ) |
37 |
36
|
imdistanri |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑣 ) → ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑦 = 𝑣 ) ) |
38 |
35 37
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑦 = 𝑣 ) ) |
39 |
|
simpl |
⊢ ( ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑦 = 𝑣 ) → [ 𝑣 / 𝑦 ] 𝜑 ) |
40 |
38 39
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ [ 𝑣 / 𝑦 ] 𝜑 ) |
41 |
|
pm3.21 |
⊢ ( 𝑥 = 𝑢 → ( [ 𝑣 / 𝑦 ] 𝜑 → ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) ) ) |
42 |
30 40 41
|
e11 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) ) |
43 |
|
sbequ1 |
⊢ ( 𝑥 = 𝑢 → ( [ 𝑣 / 𝑦 ] 𝜑 → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
44 |
43
|
imdistanri |
⊢ ( ( [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) ) |
45 |
42 44
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) ) |
46 |
|
simpl |
⊢ ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ 𝑥 = 𝑢 ) → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
47 |
45 46
|
e1a |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
48 |
|
pm3.2 |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) ) |
49 |
29 47 48
|
e11 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ▶ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
50 |
49
|
in1 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
51 |
26 50
|
impbii |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |