Step |
Hyp |
Ref |
Expression |
1 |
|
sspmaplub.u |
⊢ 𝑈 = ( lub ‘ 𝐾 ) |
2 |
|
sspmaplub.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
sspmaplub.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( ⊥𝑃 ‘ 𝐾 ) = ( ⊥𝑃 ‘ 𝐾 ) |
5 |
1 2 3 4
|
2polvalN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ) = ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) |
6 |
5
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ) ) = ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) ) |
7 |
6
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ) ) ) = ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) ) ) |
8 |
2 4
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝐴 ) |
9 |
2 4
|
3polN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ⊆ 𝐴 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ) ) ) = ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
10 |
8 9
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ) ) ) = ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
11 |
7 10
|
eqtr3d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) ) = ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
12 |
|
hlclat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ CLat ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
14 |
13 2
|
atssbase |
⊢ 𝐴 ⊆ ( Base ‘ 𝐾 ) |
15 |
|
sstr |
⊢ ( ( 𝑆 ⊆ 𝐴 ∧ 𝐴 ⊆ ( Base ‘ 𝐾 ) ) → 𝑆 ⊆ ( Base ‘ 𝐾 ) ) |
16 |
14 15
|
mpan2 |
⊢ ( 𝑆 ⊆ 𝐴 → 𝑆 ⊆ ( Base ‘ 𝐾 ) ) |
17 |
13 1
|
clatlubcl |
⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ ( Base ‘ 𝐾 ) ) → ( 𝑈 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
12 16 17
|
syl2an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
13 2 3
|
pmapssat |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ‘ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ⊆ 𝐴 ) |
20 |
18 19
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ⊆ 𝐴 ) |
21 |
1 2 3 4
|
2polvalN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ⊆ 𝐴 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) ) = ( 𝑀 ‘ ( 𝑈 ‘ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) ) ) |
22 |
20 21
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) ) = ( 𝑀 ‘ ( 𝑈 ‘ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) ) ) |
23 |
11 22
|
eqtr3d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝑆 ) ) = ( 𝑀 ‘ ( 𝑈 ‘ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) ) ) |
24 |
23 5
|
eqtr3d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ) → ( 𝑀 ‘ ( 𝑈 ‘ ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) ) = ( 𝑀 ‘ ( 𝑈 ‘ 𝑆 ) ) ) |