Description: The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2pol0.o | ⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) | |
| Assertion | 2pol0N | ⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ( ⊥ ‘ ∅ ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2pol0.o | ⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) | |
| 2 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 3 | 2 1 | pol0N | ⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ∅ ) = ( Atoms ‘ 𝐾 ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ( ⊥ ‘ ∅ ) ) = ( ⊥ ‘ ( Atoms ‘ 𝐾 ) ) ) |
| 5 | 2 1 | pol1N | ⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ( Atoms ‘ 𝐾 ) ) = ∅ ) |
| 6 | 4 5 | eqtrd | ⊢ ( 𝐾 ∈ HL → ( ⊥ ‘ ( ⊥ ‘ ∅ ) ) = ∅ ) |