Step |
Hyp |
Ref |
Expression |
1 |
|
2polat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
2polat.p |
⊢ 𝑃 = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
4 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) |
6 |
4 1 5 2
|
polatN |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ‘ { 𝑄 } ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) ) |
7 |
3 6
|
sylan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ‘ { 𝑄 } ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ‘ ( 𝑃 ‘ { 𝑄 } ) ) = ( 𝑃 ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) ) ) |
9 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
11 |
10 1
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
12 |
10 4
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
13 |
9 11 12
|
syl2an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
10 4 5 2
|
polpmapN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) ) ) |
15 |
13 14
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) ) ) |
16 |
10 4
|
opococ |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) = 𝑄 ) |
17 |
9 11 16
|
syl2an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) = 𝑄 ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) ) = ( ( pmap ‘ 𝐾 ) ‘ 𝑄 ) ) |
19 |
1 5
|
pmapat |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ 𝑄 ) = { 𝑄 } ) |
20 |
18 19
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) ) = { 𝑄 } ) |
21 |
15 20
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑄 ) ) ) = { 𝑄 } ) |
22 |
8 21
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ‘ ( 𝑃 ‘ { 𝑄 } ) ) = { 𝑄 } ) |