Step |
Hyp |
Ref |
Expression |
1 |
|
2polss.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
2polss.p |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) → 𝐾 ∈ HL ) |
4 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → 𝐾 ∈ HL ) |
5 |
1 2
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑌 ) ⊆ 𝐴 ) |
6 |
5
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑌 ) ⊆ 𝐴 ) |
7 |
1 2
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ 𝑌 ) ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ 𝐴 ) |
8 |
4 6 7
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ 𝐴 ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ 𝐴 ) |
10 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
11 |
1 2
|
polcon3N |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ 𝐴 ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
12 |
3 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) |
13 |
12
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
14 |
1 2
|
3polN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) = ( ⊥ ‘ 𝑌 ) ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) = ( ⊥ ‘ 𝑌 ) ) |
16 |
1 2
|
3polN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
18 |
15 17
|
sseq12d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ↔ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
19 |
13 18
|
sylibd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |
20 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → 𝐾 ∈ HL ) |
21 |
1 2
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
22 |
21
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
24 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
25 |
1 2
|
polcon3N |
⊢ ( ( 𝐾 ∈ HL ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
26 |
20 23 24 25
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
27 |
26
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
28 |
19 27
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ↔ ( ⊥ ‘ 𝑌 ) ⊆ ( ⊥ ‘ 𝑋 ) ) ) |