Metamath Proof Explorer


Theorem 2polvalN

Description: Value of double polarity. (Contributed by NM, 25-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2polval.u 𝑈 = ( lub ‘ 𝐾 )
2polval.a 𝐴 = ( Atoms ‘ 𝐾 )
2polval.m 𝑀 = ( pmap ‘ 𝐾 )
2polval.p = ( ⊥𝑃𝐾 )
Assertion 2polvalN ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ‘ ( 𝑋 ) ) = ( 𝑀 ‘ ( 𝑈𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 2polval.u 𝑈 = ( lub ‘ 𝐾 )
2 2polval.a 𝐴 = ( Atoms ‘ 𝐾 )
3 2polval.m 𝑀 = ( pmap ‘ 𝐾 )
4 2polval.p = ( ⊥𝑃𝐾 )
5 eqid ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 )
6 1 5 2 3 4 polval2N ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑋 ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ) )
7 6 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ‘ ( 𝑋 ) ) = ( ‘ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ) ) )
8 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
9 8 adantr ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → 𝐾 ∈ OP )
10 hlclat ( 𝐾 ∈ HL → 𝐾 ∈ CLat )
11 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
12 11 2 atssbase 𝐴 ⊆ ( Base ‘ 𝐾 )
13 sstr ( ( 𝑋𝐴𝐴 ⊆ ( Base ‘ 𝐾 ) ) → 𝑋 ⊆ ( Base ‘ 𝐾 ) )
14 12 13 mpan2 ( 𝑋𝐴𝑋 ⊆ ( Base ‘ 𝐾 ) )
15 11 1 clatlubcl ( ( 𝐾 ∈ CLat ∧ 𝑋 ⊆ ( Base ‘ 𝐾 ) ) → ( 𝑈𝑋 ) ∈ ( Base ‘ 𝐾 ) )
16 10 14 15 syl2an ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑈𝑋 ) ∈ ( Base ‘ 𝐾 ) )
17 11 5 opoccl ( ( 𝐾 ∈ OP ∧ ( 𝑈𝑋 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ∈ ( Base ‘ 𝐾 ) )
18 9 16 17 syl2anc ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ∈ ( Base ‘ 𝐾 ) )
19 11 5 3 4 polpmapN ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ‘ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ) ) )
20 18 19 syldan ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ‘ ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ) ) = ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ) ) )
21 11 5 opococ ( ( 𝐾 ∈ OP ∧ ( 𝑈𝑋 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ) = ( 𝑈𝑋 ) )
22 9 16 21 syl2anc ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ) = ( 𝑈𝑋 ) )
23 22 fveq2d ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( 𝑀 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( 𝑈𝑋 ) ) ) ) = ( 𝑀 ‘ ( 𝑈𝑋 ) ) )
24 7 20 23 3eqtrd ( ( 𝐾 ∈ HL ∧ 𝑋𝐴 ) → ( ‘ ( 𝑋 ) ) = ( 𝑀 ‘ ( 𝑈𝑋 ) ) )