| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
⊢ 2 ∈ ℤ |
| 2 |
|
1lt2 |
⊢ 1 < 2 |
| 3 |
|
eluz2b1 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 1 < 2 ) ) |
| 4 |
1 2 3
|
mpbir2an |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
| 5 |
|
ral0 |
⊢ ∀ 𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 |
| 6 |
|
fzssuz |
⊢ ( 2 ... ( 2 − 1 ) ) ⊆ ( ℤ≥ ‘ 2 ) |
| 7 |
|
dfss2 |
⊢ ( ( 2 ... ( 2 − 1 ) ) ⊆ ( ℤ≥ ‘ 2 ) ↔ ( ( 2 ... ( 2 − 1 ) ) ∩ ( ℤ≥ ‘ 2 ) ) = ( 2 ... ( 2 − 1 ) ) ) |
| 8 |
6 7
|
mpbi |
⊢ ( ( 2 ... ( 2 − 1 ) ) ∩ ( ℤ≥ ‘ 2 ) ) = ( 2 ... ( 2 − 1 ) ) |
| 9 |
|
uzdisj |
⊢ ( ( 2 ... ( 2 − 1 ) ) ∩ ( ℤ≥ ‘ 2 ) ) = ∅ |
| 10 |
8 9
|
eqtr3i |
⊢ ( 2 ... ( 2 − 1 ) ) = ∅ |
| 11 |
10
|
raleqi |
⊢ ( ∀ 𝑧 ∈ ( 2 ... ( 2 − 1 ) ) ¬ 𝑧 ∥ 2 ↔ ∀ 𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 ) |
| 12 |
5 11
|
mpbir |
⊢ ∀ 𝑧 ∈ ( 2 ... ( 2 − 1 ) ) ¬ 𝑧 ∥ 2 |
| 13 |
|
isprm3 |
⊢ ( 2 ∈ ℙ ↔ ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 2 − 1 ) ) ¬ 𝑧 ∥ 2 ) ) |
| 14 |
4 12 13
|
mpbir2an |
⊢ 2 ∈ ℙ |