Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
⊢ 2 ∈ ℤ |
2 |
|
1lt2 |
⊢ 1 < 2 |
3 |
|
eluz2b1 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 1 < 2 ) ) |
4 |
1 2 3
|
mpbir2an |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
5 |
|
ral0 |
⊢ ∀ 𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 |
6 |
|
fzssuz |
⊢ ( 2 ... ( 2 − 1 ) ) ⊆ ( ℤ≥ ‘ 2 ) |
7 |
|
df-ss |
⊢ ( ( 2 ... ( 2 − 1 ) ) ⊆ ( ℤ≥ ‘ 2 ) ↔ ( ( 2 ... ( 2 − 1 ) ) ∩ ( ℤ≥ ‘ 2 ) ) = ( 2 ... ( 2 − 1 ) ) ) |
8 |
6 7
|
mpbi |
⊢ ( ( 2 ... ( 2 − 1 ) ) ∩ ( ℤ≥ ‘ 2 ) ) = ( 2 ... ( 2 − 1 ) ) |
9 |
|
uzdisj |
⊢ ( ( 2 ... ( 2 − 1 ) ) ∩ ( ℤ≥ ‘ 2 ) ) = ∅ |
10 |
8 9
|
eqtr3i |
⊢ ( 2 ... ( 2 − 1 ) ) = ∅ |
11 |
10
|
raleqi |
⊢ ( ∀ 𝑧 ∈ ( 2 ... ( 2 − 1 ) ) ¬ 𝑧 ∥ 2 ↔ ∀ 𝑧 ∈ ∅ ¬ 𝑧 ∥ 2 ) |
12 |
5 11
|
mpbir |
⊢ ∀ 𝑧 ∈ ( 2 ... ( 2 − 1 ) ) ¬ 𝑧 ∥ 2 |
13 |
|
isprm3 |
⊢ ( 2 ∈ ℙ ↔ ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( 2 ... ( 2 − 1 ) ) ¬ 𝑧 ∥ 2 ) ) |
14 |
4 12 13
|
mpbir2an |
⊢ 2 ∈ ℙ |