Step |
Hyp |
Ref |
Expression |
1 |
|
2wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 |
2 |
|
2wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 |
3 |
|
2wlkd.s |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
4 |
|
2wlkd.n |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) |
5 |
1 2 3
|
2wlkdlem3 |
⊢ ( 𝜑 → ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) |
6 |
|
simpl |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( 𝑃 ‘ 0 ) = 𝐴 ) |
7 |
|
simpr |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( 𝑃 ‘ 1 ) = 𝐵 ) |
8 |
6 7
|
neeq12d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ↔ 𝐴 ≠ 𝐵 ) ) |
9 |
8
|
bicomd |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
10 |
9
|
3adant3 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
11 |
10
|
biimpcd |
⊢ ( 𝐴 ≠ 𝐵 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) |
14 |
13
|
a1d |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
15 |
|
eqid |
⊢ 1 = 1 |
16 |
|
eqneqall |
⊢ ( 1 = 1 → ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
17 |
15 16
|
mp1i |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
18 |
|
simpr |
⊢ ( ( ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 2 ) = 𝐶 ) |
19 |
|
simpl |
⊢ ( ( ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 1 ) = 𝐵 ) |
20 |
18 19
|
neeq12d |
⊢ ( ( ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ↔ 𝐶 ≠ 𝐵 ) ) |
21 |
|
necom |
⊢ ( 𝐶 ≠ 𝐵 ↔ 𝐵 ≠ 𝐶 ) |
22 |
20 21
|
bitr2di |
⊢ ( ( ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝐵 ≠ 𝐶 ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
23 |
22
|
3adant1 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝐵 ≠ 𝐶 ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
24 |
23
|
biimpcd |
⊢ ( 𝐵 ≠ 𝐶 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) |
27 |
26
|
a1d |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
28 |
14 17 27
|
3jca |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ∧ ( 𝑃 ‘ 2 ) = 𝐶 ) ) → ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
29 |
4 5 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
30 |
1
|
fveq2i |
⊢ ( ♯ ‘ 𝑃 ) = ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
31 |
|
s3len |
⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) = 3 |
32 |
30 31
|
eqtri |
⊢ ( ♯ ‘ 𝑃 ) = 3 |
33 |
32
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = ( 0 ..^ 3 ) |
34 |
|
fzo0to3tp |
⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
35 |
33 34
|
eqtri |
⊢ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) = { 0 , 1 , 2 } |
36 |
35
|
raleqi |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ∀ 𝑘 ∈ { 0 , 1 , 2 } ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
37 |
|
c0ex |
⊢ 0 ∈ V |
38 |
|
1ex |
⊢ 1 ∈ V |
39 |
|
2ex |
⊢ 2 ∈ V |
40 |
|
neeq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 ≠ 1 ↔ 0 ≠ 1 ) ) |
41 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) |
42 |
41
|
neeq1d |
⊢ ( 𝑘 = 0 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
43 |
40 42
|
imbi12d |
⊢ ( 𝑘 = 0 → ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
44 |
|
neeq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 ≠ 1 ↔ 1 ≠ 1 ) ) |
45 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 1 ) ) |
46 |
45
|
neeq1d |
⊢ ( 𝑘 = 1 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
47 |
44 46
|
imbi12d |
⊢ ( 𝑘 = 1 → ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
48 |
|
neeq1 |
⊢ ( 𝑘 = 2 → ( 𝑘 ≠ 1 ↔ 2 ≠ 1 ) ) |
49 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 2 ) ) |
50 |
49
|
neeq1d |
⊢ ( 𝑘 = 2 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ↔ ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
51 |
48 50
|
imbi12d |
⊢ ( 𝑘 = 2 → ( ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
52 |
37 38 39 43 47 51
|
raltp |
⊢ ( ∀ 𝑘 ∈ { 0 , 1 , 2 } ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
53 |
36 52
|
bitri |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ↔ ( ( 0 ≠ 1 → ( 𝑃 ‘ 0 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 1 ≠ 1 → ( 𝑃 ‘ 1 ) ≠ ( 𝑃 ‘ 1 ) ) ∧ ( 2 ≠ 1 → ( 𝑃 ‘ 2 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
54 |
29 53
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
55 |
2
|
fveq2i |
⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) |
56 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) = 2 |
57 |
55 56
|
eqtri |
⊢ ( ♯ ‘ 𝐹 ) = 2 |
58 |
57
|
oveq2i |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ..^ 2 ) |
59 |
|
fzo12sn |
⊢ ( 1 ..^ 2 ) = { 1 } |
60 |
58 59
|
eqtri |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = { 1 } |
61 |
60
|
raleqi |
⊢ ( ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ { 1 } ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |
62 |
|
neeq2 |
⊢ ( 𝑗 = 1 → ( 𝑘 ≠ 𝑗 ↔ 𝑘 ≠ 1 ) ) |
63 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( 𝑃 ‘ 𝑗 ) = ( 𝑃 ‘ 1 ) ) |
64 |
63
|
neeq2d |
⊢ ( 𝑗 = 1 → ( ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ↔ ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
65 |
62 64
|
imbi12d |
⊢ ( 𝑗 = 1 → ( ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) ) |
66 |
38 65
|
ralsn |
⊢ ( ∀ 𝑗 ∈ { 1 } ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
67 |
61 66
|
bitri |
⊢ ( ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
68 |
67
|
ralbii |
⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘 ≠ 1 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 1 ) ) ) |
69 |
54 68
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘 ≠ 𝑗 → ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ 𝑗 ) ) ) |