| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 2 |  | 2wlkd.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 ”〉 | 
						
							| 3 |  | 2wlkd.s | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 4 |  | 2wlkd.n | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 5 | 1 2 3 | 2wlkdlem3 | ⊢ ( 𝜑  →  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 ) ) | 
						
							| 6 |  | simpl | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵 )  →  ( 𝑃 ‘ 0 )  =  𝐴 ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵 )  →  ( 𝑃 ‘ 1 )  =  𝐵 ) | 
						
							| 8 | 6 7 | neeq12d | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵 )  →  ( ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 )  ↔  𝐴  ≠  𝐵 ) ) | 
						
							| 9 | 8 | bicomd | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵 )  →  ( 𝐴  ≠  𝐵  ↔  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 10 | 9 | 3adant3 | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝐴  ≠  𝐵  ↔  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 11 | 10 | biimpcd | ⊢ ( 𝐴  ≠  𝐵  →  ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  →  ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 ) )  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) | 
						
							| 14 | 13 | a1d | ⊢ ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 ) )  →  ( 0  ≠  1  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 15 |  | eqid | ⊢ 1  =  1 | 
						
							| 16 |  | eqneqall | ⊢ ( 1  =  1  →  ( 1  ≠  1  →  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 17 | 15 16 | mp1i | ⊢ ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 ) )  →  ( 1  ≠  1  →  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 2 )  =  𝐶 ) | 
						
							| 19 |  | simpl | ⊢ ( ( ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 1 )  =  𝐵 ) | 
						
							| 20 | 18 19 | neeq12d | ⊢ ( ( ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 )  ↔  𝐶  ≠  𝐵 ) ) | 
						
							| 21 |  | necom | ⊢ ( 𝐶  ≠  𝐵  ↔  𝐵  ≠  𝐶 ) | 
						
							| 22 | 20 21 | bitr2di | ⊢ ( ( ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝐵  ≠  𝐶  ↔  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 23 | 22 | 3adant1 | ⊢ ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝐵  ≠  𝐶  ↔  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 24 | 23 | biimpcd | ⊢ ( 𝐵  ≠  𝐶  →  ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  →  ( ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 )  →  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 ) )  →  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) | 
						
							| 27 | 26 | a1d | ⊢ ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 ) )  →  ( 2  ≠  1  →  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 28 | 14 17 27 | 3jca | ⊢ ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( ( 𝑃 ‘ 0 )  =  𝐴  ∧  ( 𝑃 ‘ 1 )  =  𝐵  ∧  ( 𝑃 ‘ 2 )  =  𝐶 ) )  →  ( ( 0  ≠  1  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) )  ∧  ( 1  ≠  1  →  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 1 ) )  ∧  ( 2  ≠  1  →  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) ) ) | 
						
							| 29 | 4 5 28 | syl2anc | ⊢ ( 𝜑  →  ( ( 0  ≠  1  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) )  ∧  ( 1  ≠  1  →  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 1 ) )  ∧  ( 2  ≠  1  →  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) ) ) | 
						
							| 30 | 1 | fveq2i | ⊢ ( ♯ ‘ 𝑃 )  =  ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 31 |  | s3len | ⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 )  =  3 | 
						
							| 32 | 30 31 | eqtri | ⊢ ( ♯ ‘ 𝑃 )  =  3 | 
						
							| 33 | 32 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 𝑃 ) )  =  ( 0 ..^ 3 ) | 
						
							| 34 |  | fzo0to3tp | ⊢ ( 0 ..^ 3 )  =  { 0 ,  1 ,  2 } | 
						
							| 35 | 33 34 | eqtri | ⊢ ( 0 ..^ ( ♯ ‘ 𝑃 ) )  =  { 0 ,  1 ,  2 } | 
						
							| 36 | 35 | raleqi | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) )  ↔  ∀ 𝑘  ∈  { 0 ,  1 ,  2 } ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 37 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 38 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 39 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 40 |  | neeq1 | ⊢ ( 𝑘  =  0  →  ( 𝑘  ≠  1  ↔  0  ≠  1 ) ) | 
						
							| 41 |  | fveq2 | ⊢ ( 𝑘  =  0  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 0 ) ) | 
						
							| 42 | 41 | neeq1d | ⊢ ( 𝑘  =  0  →  ( ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 )  ↔  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 43 | 40 42 | imbi12d | ⊢ ( 𝑘  =  0  →  ( ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) )  ↔  ( 0  ≠  1  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) ) ) ) | 
						
							| 44 |  | neeq1 | ⊢ ( 𝑘  =  1  →  ( 𝑘  ≠  1  ↔  1  ≠  1 ) ) | 
						
							| 45 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 46 | 45 | neeq1d | ⊢ ( 𝑘  =  1  →  ( ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 )  ↔  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 47 | 44 46 | imbi12d | ⊢ ( 𝑘  =  1  →  ( ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) )  ↔  ( 1  ≠  1  →  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 1 ) ) ) ) | 
						
							| 48 |  | neeq1 | ⊢ ( 𝑘  =  2  →  ( 𝑘  ≠  1  ↔  2  ≠  1 ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑘  =  2  →  ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ 2 ) ) | 
						
							| 50 | 49 | neeq1d | ⊢ ( 𝑘  =  2  →  ( ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 )  ↔  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 51 | 48 50 | imbi12d | ⊢ ( 𝑘  =  2  →  ( ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) )  ↔  ( 2  ≠  1  →  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) ) ) | 
						
							| 52 | 37 38 39 43 47 51 | raltp | ⊢ ( ∀ 𝑘  ∈  { 0 ,  1 ,  2 } ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) )  ↔  ( ( 0  ≠  1  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) )  ∧  ( 1  ≠  1  →  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 1 ) )  ∧  ( 2  ≠  1  →  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) ) ) | 
						
							| 53 | 36 52 | bitri | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) )  ↔  ( ( 0  ≠  1  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 1 ) )  ∧  ( 1  ≠  1  →  ( 𝑃 ‘ 1 )  ≠  ( 𝑃 ‘ 1 ) )  ∧  ( 2  ≠  1  →  ( 𝑃 ‘ 2 )  ≠  ( 𝑃 ‘ 1 ) ) ) ) | 
						
							| 54 | 29 53 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 55 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 )  =  ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 ) | 
						
							| 56 |  | s2len | ⊢ ( ♯ ‘ 〈“ 𝐽 𝐾 ”〉 )  =  2 | 
						
							| 57 | 55 56 | eqtri | ⊢ ( ♯ ‘ 𝐹 )  =  2 | 
						
							| 58 | 57 | oveq2i | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) )  =  ( 1 ..^ 2 ) | 
						
							| 59 |  | fzo12sn | ⊢ ( 1 ..^ 2 )  =  { 1 } | 
						
							| 60 | 58 59 | eqtri | ⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) )  =  { 1 } | 
						
							| 61 | 60 | raleqi | ⊢ ( ∀ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘  ≠  𝑗  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 𝑗 ) )  ↔  ∀ 𝑗  ∈  { 1 } ( 𝑘  ≠  𝑗  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 62 |  | neeq2 | ⊢ ( 𝑗  =  1  →  ( 𝑘  ≠  𝑗  ↔  𝑘  ≠  1 ) ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑗  =  1  →  ( 𝑃 ‘ 𝑗 )  =  ( 𝑃 ‘ 1 ) ) | 
						
							| 64 | 63 | neeq2d | ⊢ ( 𝑗  =  1  →  ( ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 𝑗 )  ↔  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 65 | 62 64 | imbi12d | ⊢ ( 𝑗  =  1  →  ( ( 𝑘  ≠  𝑗  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 𝑗 ) )  ↔  ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) ) ) ) | 
						
							| 66 | 38 65 | ralsn | ⊢ ( ∀ 𝑗  ∈  { 1 } ( 𝑘  ≠  𝑗  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 𝑗 ) )  ↔  ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 67 | 61 66 | bitri | ⊢ ( ∀ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘  ≠  𝑗  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 𝑗 ) )  ↔  ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 68 | 67 | ralbii | ⊢ ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘  ≠  𝑗  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 𝑗 ) )  ↔  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ( 𝑘  ≠  1  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 1 ) ) ) | 
						
							| 69 | 54 68 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑘  ≠  𝑗  →  ( 𝑃 ‘ 𝑘 )  ≠  ( 𝑃 ‘ 𝑗 ) ) ) |