| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2pthnloop.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 |  | pthiswlk | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | 
						
							| 3 |  | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 5 |  | ispth | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) ) | 
						
							| 6 |  | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 8 | 7 1 | iswlkg | ⊢ ( 𝐺  ∈  V  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ↔  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 9 | 8 | anbi1d | ⊢ ( 𝐺  ∈  V  →  ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝐹 )  ↔  ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  ∧  Fun  ◡ 𝐹 ) ) ) | 
						
							| 10 | 6 9 | bitrid | ⊢ ( 𝐺  ∈  V  →  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ↔  ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  ∧  Fun  ◡ 𝐹 ) ) ) | 
						
							| 11 |  | pthdadjvtx | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ∧  1  <  ( ♯ ‘ 𝐹 )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝑖 )  ≠  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 12 | 11 | ad5ant245 | ⊢ ( ( ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  ∧  ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  1  <  ( ♯ ‘ 𝐹 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ 𝑖 )  ≠  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 13 | 12 | neneqd | ⊢ ( ( ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  ∧  ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  1  <  ( ♯ ‘ 𝐹 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ¬  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 14 |  | ifpfal | ⊢ ( ¬  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  ↔  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  ∧  ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  1  <  ( ♯ ‘ 𝐹 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ( if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  ↔  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) | 
						
							| 16 |  | fvexd | ⊢ ( ¬  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( 𝑃 ‘ 𝑖 )  ∈  V ) | 
						
							| 17 |  | fvexd | ⊢ ( ¬  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∈  V ) | 
						
							| 18 |  | neqne | ⊢ ( ¬  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( 𝑃 ‘ 𝑖 )  ≠  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 19 |  | fvexd | ⊢ ( ¬  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  V ) | 
						
							| 20 |  | prsshashgt1 | ⊢ ( ( ( ( 𝑃 ‘ 𝑖 )  ∈  V  ∧  ( 𝑃 ‘ ( 𝑖  +  1 ) )  ∈  V  ∧  ( 𝑃 ‘ 𝑖 )  ≠  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  ∧  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  V )  →  ( { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  →  2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 21 | 16 17 18 19 20 | syl31anc | ⊢ ( ¬  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) )  →  ( { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  →  2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  ∧  ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  1  <  ( ♯ ‘ 𝐹 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ( { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  →  2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 23 | 15 22 | sylbid | ⊢ ( ( ( ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  ∧  ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  1  <  ( ♯ ‘ 𝐹 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ¬  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) )  →  ( if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 24 | 13 23 | mpdan | ⊢ ( ( ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  ∧  ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  1  <  ( ♯ ‘ 𝐹 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 25 | 24 | ralimdva | ⊢ ( ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  ∧  ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  ∧  1  <  ( ♯ ‘ 𝐹 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 26 | 25 | ex | ⊢ ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  ∧  ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 27 | 26 | com23 | ⊢ ( ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  ∧  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  ∧  ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 28 | 27 | exp31 | ⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 29 | 28 | com24 | ⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) )  →  ( ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 30 | 29 | 3impia | ⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  →  ( ( ( Fun  ◡ 𝐹  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 31 | 30 | exp4c | ⊢ ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  →  ( Fun  ◡ 𝐹  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( 𝑖  +  1 ) ) ,  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) } ,  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ⊆  ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  ∧  Fun  ◡ 𝐹 )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) | 
						
							| 33 | 10 32 | biimtrdi | ⊢ ( 𝐺  ∈  V  →  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) ) | 
						
							| 34 | 33 | com24 | ⊢ ( 𝐺  ∈  V  →  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) ) | 
						
							| 35 | 34 | com14 | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  →  ( Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  →  ( 𝐺  ∈  V  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) ) ) | 
						
							| 36 | 35 | 3imp | ⊢ ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝐺  ∈  V  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 37 | 36 | com12 | ⊢ ( 𝐺  ∈  V  →  ( ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 38 | 5 37 | biimtrid | ⊢ ( 𝐺  ∈  V  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 39 | 38 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) ) | 
						
							| 40 | 4 39 | mpcom | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) | 
						
							| 41 | 40 | pm2.43i | ⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  →  ( 1  <  ( ♯ ‘ 𝐹 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 42 | 41 | imp | ⊢ ( ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ∧  1  <  ( ♯ ‘ 𝐹 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) 2  ≤  ( ♯ ‘ ( 𝐼 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) |