| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2pthon3v.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 2pthon3v.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | edgval | ⊢ ( Edg ‘ 𝐺 )  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 4 | 2 3 | eqtri | ⊢ 𝐸  =  ran  ( iEdg ‘ 𝐺 ) | 
						
							| 5 | 4 | eleq2i | ⊢ ( { 𝐴 ,  𝐵 }  ∈  𝐸  ↔  { 𝐴 ,  𝐵 }  ∈  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 6 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 7 | 1 6 | uhgrf | ⊢ ( 𝐺  ∈  UHGraph  →  ( iEdg ‘ 𝐺 ) : dom  ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫  𝑉  ∖  { ∅ } ) ) | 
						
							| 8 | 7 | ffnd | ⊢ ( 𝐺  ∈  UHGraph  →  ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 9 |  | fvelrnb | ⊢ ( ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 )  →  ( { 𝐴 ,  𝐵 }  ∈  ran  ( iEdg ‘ 𝐺 )  ↔  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝐺  ∈  UHGraph  →  ( { 𝐴 ,  𝐵 }  ∈  ran  ( iEdg ‘ 𝐺 )  ↔  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 11 | 5 10 | bitrid | ⊢ ( 𝐺  ∈  UHGraph  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ↔  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 12 | 4 | eleq2i | ⊢ ( { 𝐵 ,  𝐶 }  ∈  𝐸  ↔  { 𝐵 ,  𝐶 }  ∈  ran  ( iEdg ‘ 𝐺 ) ) | 
						
							| 13 |  | fvelrnb | ⊢ ( ( iEdg ‘ 𝐺 )  Fn  dom  ( iEdg ‘ 𝐺 )  →  ( { 𝐵 ,  𝐶 }  ∈  ran  ( iEdg ‘ 𝐺 )  ↔  ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) ) | 
						
							| 14 | 8 13 | syl | ⊢ ( 𝐺  ∈  UHGraph  →  ( { 𝐵 ,  𝐶 }  ∈  ran  ( iEdg ‘ 𝐺 )  ↔  ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) ) | 
						
							| 15 | 12 14 | bitrid | ⊢ ( 𝐺  ∈  UHGraph  →  ( { 𝐵 ,  𝐶 }  ∈  𝐸  ↔  ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) ) | 
						
							| 16 | 11 15 | anbi12d | ⊢ ( 𝐺  ∈  UHGraph  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ↔  ( ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ↔  ( ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ↔  ( ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) ) ) | 
						
							| 19 |  | reeanv | ⊢ ( ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  ↔  ( ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) ) | 
						
							| 20 | 18 19 | bitr4di | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ↔  ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) ) ) | 
						
							| 21 |  | df-s2 | ⊢ 〈“ 𝑖 𝑗 ”〉  =  ( 〈“ 𝑖 ”〉  ++  〈“ 𝑗 ”〉 ) | 
						
							| 22 | 21 | ovexi | ⊢ 〈“ 𝑖 𝑗 ”〉  ∈  V | 
						
							| 23 |  | df-s3 | ⊢ 〈“ 𝐴 𝐵 𝐶 ”〉  =  ( 〈“ 𝐴 𝐵 ”〉  ++  〈“ 𝐶 ”〉 ) | 
						
							| 24 | 23 | ovexi | ⊢ 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  V | 
						
							| 25 | 22 24 | pm3.2i | ⊢ ( 〈“ 𝑖 𝑗 ”〉  ∈  V  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  V ) | 
						
							| 26 |  | eqid | ⊢ 〈“ 𝐴 𝐵 𝐶 ”〉  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 27 |  | eqid | ⊢ 〈“ 𝑖 𝑗 ”〉  =  〈“ 𝑖 𝑗 ”〉 | 
						
							| 28 |  | simp-4r | ⊢ ( ( ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  ∧  ( 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ) )  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) )  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 29 |  | 3simpb | ⊢ ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 30 | 29 | ad3antlr | ⊢ ( ( ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  ∧  ( 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ) )  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) )  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 31 |  | eqimss2 | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  →  { 𝐴 ,  𝐵 }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) | 
						
							| 32 |  | eqimss2 | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 }  →  { 𝐵 ,  𝐶 }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) | 
						
							| 33 | 31 32 | anim12i | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  →  ( { 𝐴 ,  𝐵 }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  ∧  ( 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ) )  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) )  →  ( { 𝐴 ,  𝐵 }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) | 
						
							| 35 |  | fveqeq2 | ⊢ ( 𝑖  =  𝑗  →  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ↔  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐴 ,  𝐵 } ) ) | 
						
							| 36 | 35 | anbi1d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  ↔  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) ) ) | 
						
							| 37 |  | eqtr2 | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  →  { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐶 } ) | 
						
							| 38 |  | 3simpa | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 ) ) | 
						
							| 39 |  | 3simpc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 40 |  | preq12bg | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐶 }  ↔  ( ( 𝐴  =  𝐵  ∧  𝐵  =  𝐶 )  ∨  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐵 ) ) ) ) | 
						
							| 41 | 38 39 40 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐶 }  ↔  ( ( 𝐴  =  𝐵  ∧  𝐵  =  𝐶 )  ∨  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐵 ) ) ) ) | 
						
							| 42 |  | eqneqall | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ≠  𝐵  →  𝑖  ≠  𝑗 ) ) | 
						
							| 43 | 42 | com12 | ⊢ ( 𝐴  ≠  𝐵  →  ( 𝐴  =  𝐵  →  𝑖  ≠  𝑗 ) ) | 
						
							| 44 | 43 | 3ad2ant1 | ⊢ ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  ( 𝐴  =  𝐵  →  𝑖  ≠  𝑗 ) ) | 
						
							| 45 | 44 | com12 | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  𝑖  ≠  𝑗 ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝐴  =  𝐵  ∧  𝐵  =  𝐶 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  𝑖  ≠  𝑗 ) ) | 
						
							| 47 |  | eqneqall | ⊢ ( 𝐴  =  𝐶  →  ( 𝐴  ≠  𝐶  →  𝑖  ≠  𝑗 ) ) | 
						
							| 48 | 47 | com12 | ⊢ ( 𝐴  ≠  𝐶  →  ( 𝐴  =  𝐶  →  𝑖  ≠  𝑗 ) ) | 
						
							| 49 | 48 | 3ad2ant2 | ⊢ ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  ( 𝐴  =  𝐶  →  𝑖  ≠  𝑗 ) ) | 
						
							| 50 | 49 | com12 | ⊢ ( 𝐴  =  𝐶  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  𝑖  ≠  𝑗 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝐴  =  𝐶  ∧  𝐵  =  𝐵 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  𝑖  ≠  𝑗 ) ) | 
						
							| 52 | 46 51 | jaoi | ⊢ ( ( ( 𝐴  =  𝐵  ∧  𝐵  =  𝐶 )  ∨  ( 𝐴  =  𝐶  ∧  𝐵  =  𝐵 ) )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  𝑖  ≠  𝑗 ) ) | 
						
							| 53 | 41 52 | biimtrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐶 }  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  𝑖  ≠  𝑗 ) ) ) | 
						
							| 54 | 53 | com23 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐶 }  →  𝑖  ≠  𝑗 ) ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  →  ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐶 }  →  𝑖  ≠  𝑗 ) ) ) | 
						
							| 56 | 55 | imp | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐶 }  →  𝑖  ≠  𝑗 ) ) | 
						
							| 57 | 56 | com12 | ⊢ ( { 𝐴 ,  𝐵 }  =  { 𝐵 ,  𝐶 }  →  ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  𝑖  ≠  𝑗 ) ) | 
						
							| 58 | 37 57 | syl | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  →  ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  𝑖  ≠  𝑗 ) ) | 
						
							| 59 | 36 58 | biimtrdi | ⊢ ( 𝑖  =  𝑗  →  ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  →  ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  𝑖  ≠  𝑗 ) ) ) | 
						
							| 60 | 59 | com23 | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  →  𝑖  ≠  𝑗 ) ) ) | 
						
							| 61 |  | 2a1 | ⊢ ( 𝑖  ≠  𝑗  →  ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  →  𝑖  ≠  𝑗 ) ) ) | 
						
							| 62 | 60 61 | pm2.61ine | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  →  𝑖  ≠  𝑗 ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  ∧  ( 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ) )  →  ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  →  𝑖  ≠  𝑗 ) ) | 
						
							| 64 | 63 | imp | ⊢ ( ( ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  ∧  ( 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ) )  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) )  →  𝑖  ≠  𝑗 ) | 
						
							| 65 |  | simplr2 | ⊢ ( ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  ∧  ( 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ) )  →  𝐴  ≠  𝐶 ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  ∧  ( 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ) )  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) )  →  𝐴  ≠  𝐶 ) | 
						
							| 67 | 26 27 28 30 34 1 6 64 66 | 2pthond | ⊢ ( ( ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  ∧  ( 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ) )  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) )  →  〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 68 |  | s2len | ⊢ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 )  =  2 | 
						
							| 69 | 67 68 | jctir | ⊢ ( ( ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  ∧  ( 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ) )  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) )  →  ( 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 )  =  2 ) ) | 
						
							| 70 |  | breq12 | ⊢ ( ( 𝑓  =  〈“ 𝑖 𝑗 ”〉  ∧  𝑝  =  〈“ 𝐴 𝐵 𝐶 ”〉 )  →  ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝  ↔  〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) | 
						
							| 71 |  | fveqeq2 | ⊢ ( 𝑓  =  〈“ 𝑖 𝑗 ”〉  →  ( ( ♯ ‘ 𝑓 )  =  2  ↔  ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 )  =  2 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝑓  =  〈“ 𝑖 𝑗 ”〉  ∧  𝑝  =  〈“ 𝐴 𝐵 𝐶 ”〉 )  →  ( ( ♯ ‘ 𝑓 )  =  2  ↔  ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 )  =  2 ) ) | 
						
							| 73 | 70 72 | anbi12d | ⊢ ( ( 𝑓  =  〈“ 𝑖 𝑗 ”〉  ∧  𝑝  =  〈“ 𝐴 𝐵 𝐶 ”〉 )  →  ( ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 )  ↔  ( 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 )  =  2 ) ) ) | 
						
							| 74 | 73 | spc2egv | ⊢ ( ( 〈“ 𝑖 𝑗 ”〉  ∈  V  ∧  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  V )  →  ( ( 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉  ∧  ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 )  =  2 )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 75 | 25 69 74 | mpsyl | ⊢ ( ( ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  ∧  ( 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ) )  ∧  ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } ) )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) | 
						
							| 76 | 75 | ex | ⊢ ( ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  ∧  ( 𝑖  ∈  dom  ( iEdg ‘ 𝐺 )  ∧  𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ) )  →  ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 77 | 76 | rexlimdvva | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  ( ∃ 𝑖  ∈  dom  ( iEdg ‘ 𝐺 ) ∃ 𝑗  ∈  dom  ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 )  =  { 𝐴 ,  𝐵 }  ∧  ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 )  =  { 𝐵 ,  𝐶 } )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 78 | 20 77 | sylbid | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) ) | 
						
							| 79 | 78 | 3impia | ⊢ ( ( ( 𝐺  ∈  UHGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ∧  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) )  →  ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝  ∧  ( ♯ ‘ 𝑓 )  =  2 ) ) |