Metamath Proof Explorer


Theorem 2pthon3v

Description: For a vertex adjacent to two other vertices there is a simple path of length 2 between these other vertices in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 24-Jan-2021)

Ref Expression
Hypotheses 2pthon3v.v 𝑉 = ( Vtx ‘ 𝐺 )
2pthon3v.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion 2pthon3v ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) → ∃ 𝑓𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) )

Proof

Step Hyp Ref Expression
1 2pthon3v.v 𝑉 = ( Vtx ‘ 𝐺 )
2 2pthon3v.e 𝐸 = ( Edg ‘ 𝐺 )
3 edgval ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 )
4 2 3 eqtri 𝐸 = ran ( iEdg ‘ 𝐺 )
5 4 eleq2i ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ ran ( iEdg ‘ 𝐺 ) )
6 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
7 1 6 uhgrf ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) )
8 7 ffnd ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) )
9 fvelrnb ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( { 𝐴 , 𝐵 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ) )
10 8 9 syl ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ) )
11 5 10 syl5bb ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ) )
12 4 eleq2i ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ { 𝐵 , 𝐶 } ∈ ran ( iEdg ‘ 𝐺 ) )
13 fvelrnb ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( { 𝐵 , 𝐶 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) )
14 8 13 syl ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) )
15 12 14 syl5bb ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) )
16 11 15 anbi12d ( 𝐺 ∈ UHGraph → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) )
17 16 adantr ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) )
18 17 adantr ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) )
19 reeanv ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) )
20 18 19 bitr4di ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) )
21 df-s2 ⟨“ 𝑖 𝑗 ”⟩ = ( ⟨“ 𝑖 ”⟩ ++ ⟨“ 𝑗 ”⟩ )
22 21 ovexi ⟨“ 𝑖 𝑗 ”⟩ ∈ V
23 df-s3 ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ( ⟨“ 𝐴 𝐵 ”⟩ ++ ⟨“ 𝐶 ”⟩ )
24 23 ovexi ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ V
25 22 24 pm3.2i ( ⟨“ 𝑖 𝑗 ”⟩ ∈ V ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ V )
26 eqid ⟨“ 𝐴 𝐵 𝐶 ”⟩ = ⟨“ 𝐴 𝐵 𝐶 ”⟩
27 eqid ⟨“ 𝑖 𝑗 ”⟩ = ⟨“ 𝑖 𝑗 ”⟩
28 simp-4r ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) )
29 3simpb ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → ( 𝐴𝐵𝐵𝐶 ) )
30 29 ad3antlr ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( 𝐴𝐵𝐵𝐶 ) )
31 eqimss2 ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) )
32 eqimss2 ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } → { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) )
33 31 32 anim12i ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ( { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) )
34 33 adantl ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) )
35 fveqeq2 ( 𝑖 = 𝑗 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ) )
36 35 anbi1d ( 𝑖 = 𝑗 → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) )
37 eqtr2 ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } )
38 3simpa ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) → ( 𝐴𝑉𝐵𝑉 ) )
39 3simpc ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) → ( 𝐵𝑉𝐶𝑉 ) )
40 preq12bg ( ( ( 𝐴𝑉𝐵𝑉 ) ∧ ( 𝐵𝑉𝐶𝑉 ) ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = 𝐵𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶𝐵 = 𝐵 ) ) ) )
41 38 39 40 syl2anc ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = 𝐵𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶𝐵 = 𝐵 ) ) ) )
42 eqneqall ( 𝐴 = 𝐵 → ( 𝐴𝐵𝑖𝑗 ) )
43 42 com12 ( 𝐴𝐵 → ( 𝐴 = 𝐵𝑖𝑗 ) )
44 43 3ad2ant1 ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → ( 𝐴 = 𝐵𝑖𝑗 ) )
45 44 com12 ( 𝐴 = 𝐵 → ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → 𝑖𝑗 ) )
46 45 adantr ( ( 𝐴 = 𝐵𝐵 = 𝐶 ) → ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → 𝑖𝑗 ) )
47 eqneqall ( 𝐴 = 𝐶 → ( 𝐴𝐶𝑖𝑗 ) )
48 47 com12 ( 𝐴𝐶 → ( 𝐴 = 𝐶𝑖𝑗 ) )
49 48 3ad2ant2 ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → ( 𝐴 = 𝐶𝑖𝑗 ) )
50 49 com12 ( 𝐴 = 𝐶 → ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → 𝑖𝑗 ) )
51 50 adantr ( ( 𝐴 = 𝐶𝐵 = 𝐵 ) → ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → 𝑖𝑗 ) )
52 46 51 jaoi ( ( ( 𝐴 = 𝐵𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶𝐵 = 𝐵 ) ) → ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → 𝑖𝑗 ) )
53 41 52 syl6bi ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → 𝑖𝑗 ) ) )
54 53 com23 ( ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) → ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → 𝑖𝑗 ) ) )
55 54 adantl ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) → ( ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → 𝑖𝑗 ) ) )
56 55 imp ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → 𝑖𝑗 ) )
57 56 com12 ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → 𝑖𝑗 ) )
58 37 57 syl ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → 𝑖𝑗 ) )
59 36 58 syl6bi ( 𝑖 = 𝑗 → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → 𝑖𝑗 ) ) )
60 59 com23 ( 𝑖 = 𝑗 → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖𝑗 ) ) )
61 2a1 ( 𝑖𝑗 → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖𝑗 ) ) )
62 60 61 pm2.61ine ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖𝑗 ) )
63 62 adantr ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖𝑗 ) )
64 63 imp ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → 𝑖𝑗 )
65 simplr2 ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) → 𝐴𝐶 )
66 65 adantr ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → 𝐴𝐶 )
67 26 27 28 30 34 1 6 64 66 2pthond ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ⟨“ 𝑖 𝑗 ”⟩ ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ )
68 s2len ( ♯ ‘ ⟨“ 𝑖 𝑗 ”⟩ ) = 2
69 67 68 jctir ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( ⟨“ 𝑖 𝑗 ”⟩ ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑖 𝑗 ”⟩ ) = 2 ) )
70 breq12 ( ( 𝑓 = ⟨“ 𝑖 𝑗 ”⟩ ∧ 𝑝 = ⟨“ 𝐴 𝐵 𝐶 ”⟩ ) → ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ↔ ⟨“ 𝑖 𝑗 ”⟩ ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ ) )
71 fveqeq2 ( 𝑓 = ⟨“ 𝑖 𝑗 ”⟩ → ( ( ♯ ‘ 𝑓 ) = 2 ↔ ( ♯ ‘ ⟨“ 𝑖 𝑗 ”⟩ ) = 2 ) )
72 71 adantr ( ( 𝑓 = ⟨“ 𝑖 𝑗 ”⟩ ∧ 𝑝 = ⟨“ 𝐴 𝐵 𝐶 ”⟩ ) → ( ( ♯ ‘ 𝑓 ) = 2 ↔ ( ♯ ‘ ⟨“ 𝑖 𝑗 ”⟩ ) = 2 ) )
73 70 72 anbi12d ( ( 𝑓 = ⟨“ 𝑖 𝑗 ”⟩ ∧ 𝑝 = ⟨“ 𝐴 𝐵 𝐶 ”⟩ ) → ( ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ( ⟨“ 𝑖 𝑗 ”⟩ ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑖 𝑗 ”⟩ ) = 2 ) ) )
74 73 spc2egv ( ( ⟨“ 𝑖 𝑗 ”⟩ ∈ V ∧ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ V ) → ( ( ⟨“ 𝑖 𝑗 ”⟩ ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∧ ( ♯ ‘ ⟨“ 𝑖 𝑗 ”⟩ ) = 2 ) → ∃ 𝑓𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) )
75 25 69 74 mpsyl ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ∃ 𝑓𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) )
76 75 ex ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ∃ 𝑓𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) )
77 76 rexlimdvva ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ∃ 𝑓𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) )
78 20 77 sylbid ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ∃ 𝑓𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) )
79 78 3impia ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉𝐶𝑉 ) ) ∧ ( 𝐴𝐵𝐴𝐶𝐵𝐶 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) → ∃ 𝑓𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) )