Step |
Hyp |
Ref |
Expression |
1 |
|
2pthon3v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
2pthon3v.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
4 |
2 3
|
eqtri |
⊢ 𝐸 = ran ( iEdg ‘ 𝐺 ) |
5 |
4
|
eleq2i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ { 𝐴 , 𝐵 } ∈ ran ( iEdg ‘ 𝐺 ) ) |
6 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
7 |
1 6
|
uhgrf |
⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
8 |
7
|
ffnd |
⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
9 |
|
fvelrnb |
⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( { 𝐴 , 𝐵 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ) ) |
10 |
8 9
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ) ) |
11 |
5 10
|
syl5bb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐴 , 𝐵 } ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ) ) |
12 |
4
|
eleq2i |
⊢ ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ { 𝐵 , 𝐶 } ∈ ran ( iEdg ‘ 𝐺 ) ) |
13 |
|
fvelrnb |
⊢ ( ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) → ( { 𝐵 , 𝐶 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) |
14 |
8 13
|
syl |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ ran ( iEdg ‘ 𝐺 ) ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) |
15 |
12 14
|
syl5bb |
⊢ ( 𝐺 ∈ UHGraph → ( { 𝐵 , 𝐶 } ∈ 𝐸 ↔ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) |
16 |
11 15
|
anbi12d |
⊢ ( 𝐺 ∈ UHGraph → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) ) |
19 |
|
reeanv |
⊢ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ↔ ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) |
20 |
18 19
|
bitr4di |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) ) |
21 |
|
df-s2 |
⊢ 〈“ 𝑖 𝑗 ”〉 = ( 〈“ 𝑖 ”〉 ++ 〈“ 𝑗 ”〉 ) |
22 |
21
|
ovexi |
⊢ 〈“ 𝑖 𝑗 ”〉 ∈ V |
23 |
|
df-s3 |
⊢ 〈“ 𝐴 𝐵 𝐶 ”〉 = ( 〈“ 𝐴 𝐵 ”〉 ++ 〈“ 𝐶 ”〉 ) |
24 |
23
|
ovexi |
⊢ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ V |
25 |
22 24
|
pm3.2i |
⊢ ( 〈“ 𝑖 𝑗 ”〉 ∈ V ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ V ) |
26 |
|
eqid |
⊢ 〈“ 𝐴 𝐵 𝐶 ”〉 = 〈“ 𝐴 𝐵 𝐶 ”〉 |
27 |
|
eqid |
⊢ 〈“ 𝑖 𝑗 ”〉 = 〈“ 𝑖 𝑗 ”〉 |
28 |
|
simp-4r |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
29 |
|
3simpb |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) |
30 |
29
|
ad3antlr |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) |
31 |
|
eqimss2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
32 |
|
eqimss2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } → { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) |
33 |
31 32
|
anim12i |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ( { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ∧ { 𝐵 , 𝐶 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) ) ) |
35 |
|
fveqeq2 |
⊢ ( 𝑖 = 𝑗 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ) ) |
36 |
35
|
anbi1d |
⊢ ( 𝑖 = 𝑗 → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ↔ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) ) |
37 |
|
eqtr2 |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } ) |
38 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
39 |
|
3simpc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
40 |
|
preq12bg |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) ) ) ) |
41 |
38 39 40
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) ) ) ) |
42 |
|
eqneqall |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → 𝑖 ≠ 𝑗 ) ) |
43 |
42
|
com12 |
⊢ ( 𝐴 ≠ 𝐵 → ( 𝐴 = 𝐵 → 𝑖 ≠ 𝑗 ) ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 = 𝐵 → 𝑖 ≠ 𝑗 ) ) |
45 |
44
|
com12 |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) |
47 |
|
eqneqall |
⊢ ( 𝐴 = 𝐶 → ( 𝐴 ≠ 𝐶 → 𝑖 ≠ 𝑗 ) ) |
48 |
47
|
com12 |
⊢ ( 𝐴 ≠ 𝐶 → ( 𝐴 = 𝐶 → 𝑖 ≠ 𝑗 ) ) |
49 |
48
|
3ad2ant2 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 = 𝐶 → 𝑖 ≠ 𝑗 ) ) |
50 |
49
|
com12 |
⊢ ( 𝐴 = 𝐶 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) |
52 |
46 51
|
jaoi |
⊢ ( ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) |
53 |
41 52
|
syl6bi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝑖 ≠ 𝑗 ) ) ) |
54 |
53
|
com23 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → 𝑖 ≠ 𝑗 ) ) ) |
55 |
54
|
adantl |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → 𝑖 ≠ 𝑗 ) ) ) |
56 |
55
|
imp |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → 𝑖 ≠ 𝑗 ) ) |
57 |
56
|
com12 |
⊢ ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝑖 ≠ 𝑗 ) ) |
58 |
37 57
|
syl |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝑖 ≠ 𝑗 ) ) |
59 |
36 58
|
syl6bi |
⊢ ( 𝑖 = 𝑗 → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝑖 ≠ 𝑗 ) ) ) |
60 |
59
|
com23 |
⊢ ( 𝑖 = 𝑗 → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖 ≠ 𝑗 ) ) ) |
61 |
|
2a1 |
⊢ ( 𝑖 ≠ 𝑗 → ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖 ≠ 𝑗 ) ) ) |
62 |
60 61
|
pm2.61ine |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖 ≠ 𝑗 ) ) |
63 |
62
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → 𝑖 ≠ 𝑗 ) ) |
64 |
63
|
imp |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → 𝑖 ≠ 𝑗 ) |
65 |
|
simplr2 |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) → 𝐴 ≠ 𝐶 ) |
66 |
65
|
adantr |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → 𝐴 ≠ 𝐶 ) |
67 |
26 27 28 30 34 1 6 64 66
|
2pthond |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
68 |
|
s2len |
⊢ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 |
69 |
67 68
|
jctir |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ( 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 ) ) |
70 |
|
breq12 |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) → ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ↔ 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) |
71 |
|
fveqeq2 |
⊢ ( 𝑓 = 〈“ 𝑖 𝑗 ”〉 → ( ( ♯ ‘ 𝑓 ) = 2 ↔ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) → ( ( ♯ ‘ 𝑓 ) = 2 ↔ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 ) ) |
73 |
70 72
|
anbi12d |
⊢ ( ( 𝑓 = 〈“ 𝑖 𝑗 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) → ( ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ↔ ( 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 ) ) ) |
74 |
73
|
spc2egv |
⊢ ( ( 〈“ 𝑖 𝑗 ”〉 ∈ V ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ V ) → ( ( 〈“ 𝑖 𝑗 ”〉 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 〈“ 𝐴 𝐵 𝐶 ”〉 ∧ ( ♯ ‘ 〈“ 𝑖 𝑗 ”〉 ) = 2 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
75 |
25 69 74
|
mpsyl |
⊢ ( ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ∧ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |
76 |
75
|
ex |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ) ) → ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
77 |
76
|
rexlimdvva |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∃ 𝑗 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 , 𝐵 } ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑗 ) = { 𝐵 , 𝐶 } ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
78 |
20 77
|
sylbid |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) ) |
79 |
78
|
3impia |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) → ∃ 𝑓 ∃ 𝑝 ( 𝑓 ( 𝐴 ( SPathsOn ‘ 𝐺 ) 𝐶 ) 𝑝 ∧ ( ♯ ‘ 𝑓 ) = 2 ) ) |