Metamath Proof Explorer


Theorem 2pwne

Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008)

Ref Expression
Assertion 2pwne ( 𝐴𝑉 → 𝒫 𝒫 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 sdomirr ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴
2 canth2g ( 𝐴𝑉𝐴 ≺ 𝒫 𝐴 )
3 pwexg ( 𝐴𝑉 → 𝒫 𝐴 ∈ V )
4 canth2g ( 𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 )
5 3 4 syl ( 𝐴𝑉 → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 )
6 sdomtr ( ( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ) → 𝐴 ≺ 𝒫 𝒫 𝐴 )
7 2 5 6 syl2anc ( 𝐴𝑉𝐴 ≺ 𝒫 𝒫 𝐴 )
8 breq1 ( 𝒫 𝒫 𝐴 = 𝐴 → ( 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴𝐴 ≺ 𝒫 𝒫 𝐴 ) )
9 7 8 syl5ibrcom ( 𝐴𝑉 → ( 𝒫 𝒫 𝐴 = 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ) )
10 1 9 mtoi ( 𝐴𝑉 → ¬ 𝒫 𝒫 𝐴 = 𝐴 )
11 10 neqned ( 𝐴𝑉 → 𝒫 𝒫 𝐴𝐴 )