Description: No set equals the power set of its power set. (Contributed by NM, 17-Nov-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | 2pwne | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ≠ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomirr | ⊢ ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 | |
2 | canth2g | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝐴 ) | |
3 | pwexg | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) | |
4 | canth2g | ⊢ ( 𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ) | |
5 | 3 4 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ) |
6 | sdomtr | ⊢ ( ( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ) → 𝐴 ≺ 𝒫 𝒫 𝐴 ) | |
7 | 2 5 6 | syl2anc | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ 𝒫 𝒫 𝐴 ) |
8 | breq1 | ⊢ ( 𝒫 𝒫 𝐴 = 𝐴 → ( 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ↔ 𝐴 ≺ 𝒫 𝒫 𝐴 ) ) | |
9 | 7 8 | syl5ibrcom | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝒫 𝒫 𝐴 = 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴 ) ) |
10 | 1 9 | mtoi | ⊢ ( 𝐴 ∈ 𝑉 → ¬ 𝒫 𝒫 𝐴 = 𝐴 ) |
11 | 10 | neqned | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝒫 𝐴 ≠ 𝐴 ) |