Step |
Hyp |
Ref |
Expression |
1 |
|
sdomirr |
⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 |
2 |
|
elssuni |
⊢ ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 ) |
3 |
|
ssdomg |
⊢ ( ∪ 𝐴 ∈ V → ( 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 ) ) |
4 |
|
canth2g |
⊢ ( ∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 ∪ 𝐴 ) |
5 |
|
pwexb |
⊢ ( ∪ 𝐴 ∈ V ↔ 𝒫 ∪ 𝐴 ∈ V ) |
6 |
|
canth2g |
⊢ ( 𝒫 ∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
7 |
5 6
|
sylbi |
⊢ ( ∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
8 |
|
sdomtr |
⊢ ( ( ∪ 𝐴 ≺ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
9 |
4 7 8
|
syl2anc |
⊢ ( ∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
10 |
|
domsdomtr |
⊢ ( ( 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 ∧ ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
11 |
10
|
ex |
⊢ ( 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 → ( ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) ) |
12 |
3 9 11
|
syl6ci |
⊢ ( ∪ 𝐴 ∈ V → ( 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) ) |
13 |
2 12
|
syl5 |
⊢ ( ∪ 𝐴 ∈ V → ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) ) |
14 |
1 13
|
mtoi |
⊢ ( ∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 ) |
15 |
|
elex |
⊢ ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ∈ V ) |
16 |
|
pwexb |
⊢ ( 𝒫 ∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V ) |
17 |
5 16
|
bitri |
⊢ ( ∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V ) |
18 |
15 17
|
sylibr |
⊢ ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V ) |
19 |
18
|
con3i |
⊢ ( ¬ ∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 ) |
20 |
14 19
|
pm2.61i |
⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |