| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomirr |
⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 |
| 2 |
|
elssuni |
⊢ ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 ) |
| 3 |
|
ssdomg |
⊢ ( ∪ 𝐴 ∈ V → ( 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 ) ) |
| 4 |
|
canth2g |
⊢ ( ∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 ∪ 𝐴 ) |
| 5 |
|
pwexb |
⊢ ( ∪ 𝐴 ∈ V ↔ 𝒫 ∪ 𝐴 ∈ V ) |
| 6 |
|
canth2g |
⊢ ( 𝒫 ∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
| 7 |
5 6
|
sylbi |
⊢ ( ∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
| 8 |
|
sdomtr |
⊢ ( ( ∪ 𝐴 ≺ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
| 9 |
4 7 8
|
syl2anc |
⊢ ( ∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
| 10 |
|
domsdomtr |
⊢ ( ( 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 ∧ ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
| 11 |
10
|
ex |
⊢ ( 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 → ( ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) ) |
| 12 |
3 9 11
|
syl6ci |
⊢ ( ∪ 𝐴 ∈ V → ( 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) ) |
| 13 |
2 12
|
syl5 |
⊢ ( ∪ 𝐴 ∈ V → ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) ) |
| 14 |
1 13
|
mtoi |
⊢ ( ∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 ) |
| 15 |
|
elex |
⊢ ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ∈ V ) |
| 16 |
|
pwexb |
⊢ ( 𝒫 ∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V ) |
| 17 |
5 16
|
bitri |
⊢ ( ∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V ) |
| 18 |
15 17
|
sylibr |
⊢ ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V ) |
| 19 |
18
|
con3i |
⊢ ( ¬ ∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 ) |
| 20 |
14 19
|
pm2.61i |
⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |