Description: Theorem r19.29 with two quantifiers. (Contributed by Rodolfo Medina, 25-Sep-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | 2r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) | |
2 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) | |
3 | 2 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) |
4 | 1 3 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) |