Metamath Proof Explorer


Theorem 2r19.29

Description: Theorem r19.29 with two quantifiers. (Contributed by Rodolfo Medina, 25-Sep-2010)

Ref Expression
Assertion 2r19.29 ( ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐵 𝜓 ) → ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.29 ( ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐵 𝜓 ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) )
2 r19.29 ( ( ∀ 𝑦𝐵 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) → ∃ 𝑦𝐵 ( 𝜑𝜓 ) )
3 2 reximi ( ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) → ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) )
4 1 3 syl ( ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃ 𝑥𝐴𝑦𝐵 𝜓 ) → ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) )